We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means of a variable transformation, and outline some of its properties. We approximate two-scale derivatives, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces , , and is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.
Mediante una trasformazione di variabile, la nozione di convergenza a due scale di G. Nguetseng è qui riformulata ed estesa, ed alcune delle sue proprietà sono presentate. Tale convergenza è quindi estesa a spazi di funzioni differenziabili mediante l’approssimazione delle derivate a due scale. Inoltre si caratterizza il limite a due scale di derivate di successioni limitate negli spazi di Sobolev , , e . Infine si studia il limite a due scale dei potenziali di una successione convergente a due scale di campi irrotazionali.
@article{RLIN_2004_9_15_2_93_0, author = {Augusto Visintin}, title = {Some properties of two-scale convergence}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {93-107}, zbl = {1225.35031}, mrnumber = {2148538}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_2_93_0} }
Visintin, Augusto. Some properties of two-scale convergence. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 93-107. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_2_93_0/
[1] Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23, 1992, 1482-1518. | MR 1185639 | Zbl 0770.35005
,[2] | MR 1859696 | Zbl 0990.35001
, Shape Optimization by the Homogenization Method. Springer, New York2002.[3] Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal., 21, 1990, 823-836. | MR 1052874 | Zbl 0698.76106
- - ,[4] | MR 503330 | Zbl 0404.35001
- - , Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam 1978.[5] Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. S.I.A.M. J. Math. Anal., 27, 1996, 1520-1543. | MR 1416507 | Zbl 0866.35018
- - ,[6] Continuity and compactness of measures. Adv. in Math., 37, 1980, 16-26. | MR 585896 | Zbl 0463.28003
- ,[7] A general compactness result and its application to two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris, Ser. I, 323, 1996, 329-334. | MR 1408763 | Zbl 0865.46003
- ,[8] Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I, 335, 2002, 99-104. | MR 1921004 | Zbl 1001.49016
- - ,[9] | MR 1765047 | Zbl 0939.35001
- , An Introduction to Homogenization. Oxford Univ. Press, New York 1999.[10] | MR 1329546 | Zbl 0801.35001
- - , Homogenization of Differential Operators and Integral Functionals. Springer, Berlin 1994.[11] Homogénéisation d’un circuit électrique. C.R. Acad. Sci. Paris, Ser. II, 324, 1997, 537-542. | Zbl 0887.35016
,[12] Homogenization of electrical networks including voltage-to-voltage amplifiers. Math. Models Meth. Appl. Sci., 9, 1999, 899-932. | MR 1702869 | Zbl 0963.35014
- ,[13] Two-scale convergence. Int. J. Pure Appl. Math., 2, 2002, 35-86. | MR 1912819 | Zbl 1061.35015
- - ,[14] -convergence. In: - (eds.), Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston 1997, 21-44. | MR 1493039 | Zbl 0920.35019
- ,[15] A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20, 1989, 608-623. | MR 990867 | Zbl 0688.35007
,[16] Asymptotic analysis for a stiff variational problem arising in mechanics. S.I.A.M. J. Math. Anal., 21, 1990, 1394-1414. | MR 1075584 | Zbl 0723.73011
,[17] Mathematical tools for studying oscillations and concentrations: from Young measures to -measures and their variants. In: - - - (eds.), Multiscale Problems in Science and Technology. Springer, Berlin 2002, 1-84. | MR 1998790 | Zbl 1015.35001
,[18] Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45, 1992, 301-326. | MR 1151269 | Zbl 0794.35014
,[19] On an extension of the method of two-scale convergence and its applications. Sb. Math., 191, 2000, 973-1014. | MR 1809928 | Zbl 0969.35048
,