Some properties of two-scale convergence
Visintin, Augusto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004), p. 93-107 / Harvested from Biblioteca Digitale Italiana di Matematica

We reformulate and extend G. Nguetseng’s notion of two-scale convergence by means of a variable transformation, and outline some of its properties. We approximate two-scale derivatives, and extend this convergence to spaces of differentiable functions. The two-scale limit of derivatives of bounded sequences in the Sobolev spaces W1,pRN, Lrot2R33, Ldiv2R33 and W2,pRN is then characterized. The two-scale limit behaviour of the potentials of a two-scale convergent sequence of irrotational fields is finally studied.

Mediante una trasformazione di variabile, la nozione di convergenza a due scale di G. Nguetseng è qui riformulata ed estesa, ed alcune delle sue proprietà sono presentate. Tale convergenza è quindi estesa a spazi di funzioni differenziabili mediante l’approssimazione delle derivate a due scale. Inoltre si caratterizza il limite a due scale di derivate di successioni limitate negli spazi di Sobolev W1,pRN, Lrot2R33, Ldiv2R33 e W2,pRN. Infine si studia il limite a due scale dei potenziali di una successione convergente a due scale di campi irrotazionali.

Publié le : 2004-06-01
@article{RLIN_2004_9_15_2_93_0,
     author = {Augusto Visintin},
     title = {Some properties of two-scale convergence},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {15},
     year = {2004},
     pages = {93-107},
     zbl = {1225.35031},
     mrnumber = {2148538},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_2_93_0}
}
Visintin, Augusto. Some properties of two-scale convergence. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 93-107. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_2_93_0/

[1] Allaire, G., Homogenization and two-scale convergence. S.I.A.M. J. Math. Anal., 23, 1992, 1482-1518. | MR 1185639 | Zbl 0770.35005

[2] Allaire, G., Shape Optimization by the Homogenization Method. Springer, New York2002. | MR 1859696 | Zbl 0990.35001

[3] Arbogast, T. - Douglas, J. - Hornung, U., Derivation of the double porosity model of single phase flow via homogenization theory. S.I.A.M. J. Math. Anal., 21, 1990, 823-836. | MR 1052874 | Zbl 0698.76106

[4] Bensoussan, A. - Lions, J.L. - Papanicolaou, G., Asymptotic Analysis for Periodic Structures. North-Holland, Amsterdam 1978. | MR 503330 | Zbl 0404.35001

[5] Bourgeat, A. - Luckhaus, S. - Mikelic, A., Convergence of the homogenization process for a double-porosity model of immiscible two-phase flow. S.I.A.M. J. Math. Anal., 27, 1996, 1520-1543. | MR 1416507 | Zbl 0866.35018

[6] Brooks, J.K. - Chacon, R.V., Continuity and compactness of measures. Adv. in Math., 37, 1980, 16-26. | MR 585896 | Zbl 0463.28003

[7] Casado-Diaz, J. - Gayte, I., A general compactness result and its application to two-scale convergence of almost periodic functions. C.R. Acad. Sci. Paris, Ser. I, 323, 1996, 329-334. | MR 1408763 | Zbl 0865.46003

[8] Cioranescu, D. - Damlamian, A. - Griso, G., Periodic unfolding and homogenization. C.R. Acad. Sci. Paris, Ser. I, 335, 2002, 99-104. | MR 1921004 | Zbl 1001.49016

[9] Cioranescu, D. - Donato, P., An Introduction to Homogenization. Oxford Univ. Press, New York 1999. | MR 1765047 | Zbl 0939.35001

[10] Jikov, V.V. - Kozlov, S.M. - Oleinik, O.A., Homogenization of Differential Operators and Integral Functionals. Springer, Berlin 1994. | MR 1329546 | Zbl 0801.35001

[11] Lenczner, M., Homogénéisation d’un circuit électrique. C.R. Acad. Sci. Paris, Ser. II, 324, 1997, 537-542. | Zbl 0887.35016

[12] Lenczner, M. - Senouci, G., Homogenization of electrical networks including voltage-to-voltage amplifiers. Math. Models Meth. Appl. Sci., 9, 1999, 899-932. | MR 1702869 | Zbl 0963.35014

[13] Lukkassen, D. - Nguetseng, G. - Wall, P., Two-scale convergence. Int. J. Pure Appl. Math., 2, 2002, 35-86. | MR 1912819 | Zbl 1061.35015

[14] Murat, F. - Tartar, L., H-convergence. In: A. Cherkaev - R. Kohn (eds.), Topics in the Mathematical Modelling of Composite Materials. Birkhäuser, Boston 1997, 21-44. | MR 1493039 | Zbl 0920.35019

[15] Nguetseng, G., A general convergence result for a functional related to the theory of homogenization. S.I.A.M. J. Math. Anal., 20, 1989, 608-623. | MR 990867 | Zbl 0688.35007

[16] Nguetseng, G., Asymptotic analysis for a stiff variational problem arising in mechanics. S.I.A.M. J. Math. Anal., 21, 1990, 1394-1414. | MR 1075584 | Zbl 0723.73011

[17] Tartar, L., Mathematical tools for studying oscillations and concentrations: from Young measures to H-measures and their variants. In: N. Antonić - C.J. Van Duijn - W. Jäger - A. Mikelić (eds.), Multiscale Problems in Science and Technology. Springer, Berlin 2002, 1-84. | MR 1998790 | Zbl 1015.35001

[18] Weinan, E., Homogenization of linear and nonlinear transport equations. Comm. Pure Appl. Math., 45, 1992, 301-326. | MR 1151269 | Zbl 0794.35014

[19] Zhikov, V.V., On an extension of the method of two-scale convergence and its applications. Sb. Math., 191, 2000, 973-1014. | MR 1809928 | Zbl 0969.35048