A description of bounded pseudoconvex Reinhardt domains, which are complete with respect to the inner -th Carathéodory-Reiffen distance, is given.
Si presenta la descrizione di domini di Reinhardt limitati e pseudo-convessi, che sono completi per la distanza interna -esima di Carathéodory-Reiffen.
@article{RLIN_2004_9_15_2_87_0, author = {Pawe\l\ Zapa\l owski}, title = {Inner $k$-th Carath\'eodory-Reiffen completeness of Reinhardt domains}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {87-92}, zbl = {1225.32006}, mrnumber = {2148537}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_2_87_0} }
Zapałowski, Paweł. Inner $k$-th Carathéodory-Reiffen completeness of Reinhardt domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 87-92. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_2_87_0/
[1] On completeness of invariant metrics of Reinhardt domains. Arch. Math., 63, 1994, 166-172. | MR 1289299 | Zbl 0815.32001
,[2] Invariant Distances and Metrics in Complex Analysis. de Gruyter Expositions Math. 9, Berlin 1993. | MR 1242120 | Zbl 0789.32001
- ,[3] About the Carathéodory completeness of all Reinhardt domains. In: (ed.), Functional Analysis, Holomorphy and Approximation Theory II. North-Holland, Amsterdam 1984, 331-337. | MR 771335 | Zbl 0536.32001
,[4] On Carathéodory completeness of pseudoconvex Reinhardt domains. Proc. Amer. Math. Soc., 128(3), 2000, 857-864. | MR 1646214 | Zbl 0939.32025
,[5] Inner Carathéodory completeness of Reinhardt domains. Rend. Mat. Acc. Lincei, s. 9, v. 12, 2001, 153-157. | MR 1898456 | Zbl 1072.32017
,