Let be a field and be the Grassmannian of -dimensional linear subspaces of . A map is called nesting if for every . Glover, Homer and Stong showed that there are no continuous nesting maps except for a few obvious ones. We prove a similar result for algebraic nesting maps , where is an algebraically closed field of arbitrary characteristic. For this yields a description of the algebraic sub-bundles of the tangent bundle to the projective space .
Sia un campo e la Grassmanniana dei sottospazi -dimensionali di . Un’applicazione si dice «nesting» se per ogni . Glover, Homer and Stong hanno dimostrato che non ci sono applicazioni continue «nesting» da a parte un piccolo numero di eccezioni. Dimostriamo un risultato analogo per applicazioni «nesting» algebriche , nel caso in cui sia un campo algebricamente chiuso di caratteristica arbitraria. Per ciò implica una descrizione dei sottofibrati algebrici del fibrato tangente allo spazio proiettivo .
@article{RLIN_2004_9_15_2_109_0, author = {Corrado De Concini and Zinovy Reichstein}, title = {Nesting maps of Grassmannians}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {109-118}, zbl = {1219.14052}, mrnumber = {2148539}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_2_109_0} }
De Concini, Corrado; Reichstein, Zinovy. Nesting maps of Grassmannians. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 109-118. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_2_109_0/
[1] Can one factor the classical adjoint of a generic matrix? arXiv:math.AC/0306126. | MR 2205070 | Zbl 1109.15005
,[2] On a topological obstruction to integrability. In: Global Analysis. Proc. Sympos. Pure Math., vol. XVI (Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, 127-131. | MR 266248 | Zbl 0206.50501
,[3] Chern classes of the Grassmannians and Schubert calculus. Topology, 17, 1978, n. 2, 177-182. | MR 469928 | Zbl 0398.14006
,[4] 2, Springer-Verlag, Berlin 1984. | MR 732620 | Zbl 0541.14005
, Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol.[5] Splitting the tangent bundle of projective space. Indiana Univ. Math. J., 31, 1982, n. 2, 161-166. | MR 648168 | Zbl 0454.57013
- - ,[6] 58, Benjamin Cummings Publishing Co., Reading, Mass., 1981. | MR 643101 | Zbl 0498.55001
- , Algebraic topology: a first course. Mathematics lecture note series,[7] | MR 507725 | Zbl 0836.14001
- , Principles of algebraic geometry. Pure and Applied Mathematics, Wiley-Interscience, New York 1978.[8] 54, Pitman Advanced Publishing Program, Boston, Mass., 1982. | MR 649068 | Zbl 0483.57002
, Geometry of Coxeter groups. Research notes in mathematics series,[9] 131, Springer-Verlag, New York1966. | MR 202713 | Zbl 0376.14001
, Topological methods in algebraic geometry. Third enlarged edition, Die Grundlehren der Mathematischen Wissenschaften, Band[10] | MR 561910 | Zbl 0438.32016
- - , Vector bundles on complex projective spaces. Birkhäuser, Boston, Mass., 1980.[11] Subbundles of the tangent bundle of complex projective space. Bull. Inst. Math. Acad. Sinica, 9, 1981, n. 1, 1-28. | MR 614641 | Zbl 0487.14004
,[12] 14, The Mathematical Association of America, New York1963. | MR 150048 | Zbl 0112.24806
, Combinatorial mathematics. Carus mathematical monographs, n.[13] Splitting the universal bundles over Grassmannians. In: (ed.), Algebraic and differential topology. Global differential geometry. Teubner-Texte Math., 70, Teubner, Leipzig 1984, 275-287. | MR 792701 | Zbl 0569.55009
,