We adapt the privilege theorem of Douady and Pourcin from polydomains to strictly convex domains in the complex space.
Adattiamo il «privilege theorem» di Douady e Pourcin da polidomini ai domini strettamente convessi nello spazio complesso.
@article{RLIN_2004_9_15_1_39_0, author = {Mihai Putinar and Sebastian Sandberg}, title = {Privilege on strictly convex domains}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {39-45}, zbl = {1225.32017}, mrnumber = {2102748}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_1_39_0} }
Putinar, Mihai; Sandberg, Sebastian. Privilege on strictly convex domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 39-45. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_1_39_0/
[1] Non division dans . Math. Z., 188, 1985, 493-511. | MR 774554 | Zbl 0547.32010
,[2] Feedback control for multidimensional systems and interpolation problems for multivariable functions. Virginia Tech. Preprint, 2002. | Zbl 1035.93037
- ,[3] Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier, Grenoble, 16, 1966, 1-95. | MR 203082 | Zbl 0146.31103
,[4] Recouvrements privilégiés. Ann. Inst. Fourier, Grenoble, 22, 1972, 59-96. | MR 344515 | Zbl 0236.32005
- - ,[5] 10, Oxford University Press, Clarendon Press, Oxford 1996. | MR 1420618 | Zbl 0855.47013
- , Spectral decompositions and analytic sheaves. London Mathematical Society monographs; new ser.[6] | MR 580152 | Zbl 0433.32007
- , Theory of Stein spaces. Springer-Verlag, Berlin 1979.[7] | MR 774049 | Zbl 0573.32001
- , Theory of functions on complex manifolds. Akademie-Verlag, Berlin 1984.[8] 194-195, Soc. Math. France, Paris1991. | Zbl 0746.32001
, Privilège numérique uniforme. Astérisque,[9] Sous-espaces privilégiés d’un polycylindre. Ann. Inst. Fourier, Grenoble, 25, 1975, 151-193. | MR 390292 | Zbl 0297.32010
,