We prove the essential m-dissipativity of the Kolmogorov operator associated with the stochastic Navier-Stokes flow with periodic boundary conditions in a space where is an invariant measure
Si dimostra l’essenziale m-dissipatività dell’operatore di Kolmogorov associato al flusso dell’equazione di Navier-Stokes stocastica con condizioni periodiche in uno spazio dove è una misura invariante.
@article{RLIN_2004_9_15_1_29_0, author = {Viorel Barbu and Giuseppe Da Prato and Arnaud Debussche}, title = {Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {15}, year = {2004}, pages = {29-38}, zbl = {1096.35126}, mrnumber = {2102747}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2004_9_15_1_29_0} }
Barbu, Viorel; Da Prato, Giuseppe; Debussche, Arnaud. Essential m-dissipativity of Kolmogorov operators corresponding to periodic $2D$-Navier Stokes equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 15 (2004) pp. 29-38. http://gdmltest.u-ga.fr/item/RLIN_2004_9_15_1_29_0/
[1] The transition semigroup of stochastic Navier-Stokes equations in . Infinite Dimensional Analysis, Quantum Probability and related topics, to appear.
- ,[2] Exponential mixing of the stochastic Navier-Stokes dynamics. Commun. Math. Phys., 230, n. 1, 2002, 87-132. | MR 1930573 | Zbl 1033.76011
- - ,[3] A Hille-Yosida theorem for weakly continuous semigroups. Semigroup Forum, 49, 1994, 349-367. | MR 1293091 | Zbl 0817.47048
,[4] Some results about dissipativity of Kolmogorov operators. Czechoslovak Mathematical Journal, 51, 126, 2001, 685-699. | MR 1864036 | Zbl 0996.47028
- ,[5] 293, Cambridge University Press, 2002. | MR 1985790 | Zbl 1012.35001
- , Second Order Partial Differential Equations in Hilbert spaces. London Mathematical Society Lecture Notes n.[6] Dissipativity and invariant measures for stochastic Navier-Stokes equations. NoDEA, 1, 1994, 403-423. | MR 1300150 | Zbl 0820.35108
,[7] Ergodicity of the Navier-Stokes equation under random perturbations. Commun. Math. Phys., 171, 1995, 119-141. | MR 1346374 | Zbl 0845.35080
- ,[8] A coupling approach to randomly forced nonlinear PDE’s. I. Commun. Math. Phys., 221, n. 2, 2001, 351-366. | MR 1845328 | Zbl 0991.60056
- ,[9] A coupling approach to randomly forced nonlinear PDE’s. II. Commun. Math. Phys., 230, n. 1, 2002, 81-85. | MR 1927233 | Zbl 1010.60066
- - ,[10] | Zbl 0568.35002
, Navier-Stokes equations. Theory and numerical analysis. North-Holland, 1977.[11] Gibbsian dynamics and ergodicity for the stochastically forced Navier-Stokes equation. Commun. Math. Phys., 224, n. 1, 2001, 83-106. | MR 1868992 | Zbl 0994.60065
- - ,