On the solvability of the equation div u=f in L1 and in C0
Dacorogna, Bernard ; Fusco, Nicola ; Tartar, Luc
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 239-245 / Harvested from Biblioteca Digitale Italiana di Matematica

We show that the equation div u=f has, in general, no Lipschitz (respectively W1,1) solution if f is C0 (respectively L1).

Publié le : 2003-09-01
@article{RLIN_2003_9_14_3_239_0,
     author = {Bernard Dacorogna and Nicola Fusco and Luc Tartar},
     title = {On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {239-245},
     zbl = {1225.35050},
     mrnumber = {2064270},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_3_239_0}
}
Dacorogna, Bernard; Fusco, Nicola; Tartar, Luc. On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 239-245. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_3_239_0/

[1] Bergh, J. - Löfströ, J., Interpolation spaces: an introduction. Springer-Verlag, Berlin 1976. | MR 482275 | Zbl 0344.46071

[2] Bourgain, J. - Brezis, H., Sur l’équation div u=f. C. R. Acad. Sci. Paris, ser. I, 334, 2002, 973-976. | MR 1913720 | Zbl 0999.35020

[3] Gilbarg, D. - Trudinger, N.S., Elliptic partial differential equations of second order. Springer-Verlag, Berlin 1977. | MR 473443 | Zbl 0562.35001

[4] Mc Mullen, C.T., Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal., 8, 1998, 304-314. | MR 1616159 | Zbl 0941.37030

[5] Ornstein, D., A non-inequality for differential operators in the L1 norm. Arch. Ration. Mech. Anal., 11, 1962, 40-49. | MR 149331 | Zbl 0106.29602

[6] Preiss, D., Additional regularity for Lipschitz solutions of PDE. J. Reine Angew. Math., 485, 1997, 197-207. | MR 1442194 | Zbl 0870.35022

[7] Stein, E.M., Singular integrals and differentiability properties of functions. Princeton University Press, Princeton1970. | MR 290095 | Zbl 0207.13501

[8] Stein, E.M. - Weiss, G., Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton 1971. | MR 304972 | Zbl 1026.42001

[9] Tartar, L., Imbedding theorems of Sobolev spaces into Lorentz spaces. Bollettino UMI, 1-B, 1998, 479-500. | MR 1662313 | Zbl 0929.46028