We show that the equation div has, in general, no Lipschitz (respectively ) solution if is (respectively ).
@article{RLIN_2003_9_14_3_239_0, author = {Bernard Dacorogna and Nicola Fusco and Luc Tartar}, title = {On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {14}, year = {2003}, pages = {239-245}, zbl = {1225.35050}, mrnumber = {2064270}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_3_239_0} }
Dacorogna, Bernard; Fusco, Nicola; Tartar, Luc. On the solvability of the equation div $u = f$ in $L^{1}$ and in $C^{0}$. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 239-245. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_3_239_0/
[1] | MR 482275 | Zbl 0344.46071
- , Interpolation spaces: an introduction. Springer-Verlag, Berlin 1976.[2] Sur l’équation div . C. R. Acad. Sci. Paris, ser. I, 334, 2002, 973-976. | MR 1913720 | Zbl 0999.35020
- ,[3] | MR 473443 | Zbl 0562.35001
- , Elliptic partial differential equations of second order. Springer-Verlag, Berlin 1977.[4] Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal., 8, 1998, 304-314. | MR 1616159 | Zbl 0941.37030
,[5] A non-inequality for differential operators in the norm. Arch. Ration. Mech. Anal., 11, 1962, 40-49. | MR 149331 | Zbl 0106.29602
,[6] Additional regularity for Lipschitz solutions of PDE. J. Reine Angew. Math., 485, 1997, 197-207. | MR 1442194 | Zbl 0870.35022
,[7] | MR 290095 | Zbl 0207.13501
, Singular integrals and differentiability properties of functions. Princeton University Press, Princeton1970.[8] | MR 304972 | Zbl 1026.42001
- , Introduction to Fourier analysis on Euclidean spaces. Princeton University Press, Princeton 1971.[9] Imbedding theorems of Sobolev spaces into Lorentz spaces. Bollettino UMI, 1-B, 1998, 479-500. | MR 1662313 | Zbl 0929.46028
,