This is a report on some joint work with Aobing Li on Liouville type theorems for some conformally invariant fully nonlinear equations.
@article{RLIN_2003_9_14_3_219_0, author = {YanYan Li}, title = {Liouville type theorems for some conformally invariant fully nonlinear equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {14}, year = {2003}, pages = {219-225}, zbl = {1221.35149}, mrnumber = {2064268}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_3_219_0} }
Li, YanYan. Liouville type theorems for some conformally invariant fully nonlinear equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 219-225. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_3_219_0/
[1] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42, 1989, 271-297. | MR 982351 | Zbl 0702.35085
- - ,[2] The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math., 155, 1985, 261-301. | MR 806416 | Zbl 0654.35031
- - ,[3] An a priori estimate for a fully nonlinear equation on four-manifolds. Preprint. | Zbl 1067.58028
- - ,[4] Entire solutions of a fully nonlinear equation. Preprint. | MR 2055838 | Zbl 1183.53035
- - ,[5] Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63, 1991, 615-622. | MR 1121147 | Zbl 0768.35025
- ,[6] Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | MR 544879 | Zbl 0425.35020
- - ,[7] Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 1981, 525-598. | MR 615628 | Zbl 0465.35003
- ,[8] On some conformally invariant fully nonlinear equations. C. R. Acad. Sci. Paris, Ser. I, 334, 2002, 1-6. | MR 1957529 | Zbl 0998.58011
- ,[9] On some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math., to appear. | MR 2706075 | Zbl 1155.35353
- ,[10] A general Liouville type theorem for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301239 v1 21 Jan 2003. | Zbl 1221.35149
- ,[11] Further results on Liouville type theorems for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301254 v1 22 Jan 2003. | Zbl 1221.35149
- ,[12] On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe. In preparation. | Zbl 1216.35038
- ,[13] Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d’Analyse Mathematique, to appear. | MR 2001065 | Zbl 1173.35477
- ,[14] Uniqueness theorems through the method of moving spheres. Duke Math. J., 80, 1995, 383-417. | MR 1369398 | Zbl 0846.35050
- ,[15] The conjecture on conformal transformations of Riemannian manifolds. J. Diff. Geom., 6, 1971, 247-258. | MR 303464 | Zbl 0236.53042
,[16] Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J., 101, 2000, 283-316. | MR 1738176 | Zbl 0990.53035
,[17] Conformally invariant Monge-Ampere equations: global solutions. Trans. Amer. Math. Soc., 352, 2000, 4371-4379. | MR 1694380 | Zbl 0951.35044
,