Liouville type theorems for some conformally invariant fully nonlinear equations
Li, YanYan
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 219-225 / Harvested from Biblioteca Digitale Italiana di Matematica

This is a report on some joint work with Aobing Li on Liouville type theorems for some conformally invariant fully nonlinear equations.

Publié le : 2003-09-01
@article{RLIN_2003_9_14_3_219_0,
     author = {YanYan Li},
     title = {Liouville type theorems for some conformally invariant fully nonlinear equations},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {219-225},
     zbl = {1221.35149},
     mrnumber = {2064268},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_3_219_0}
}
Li, YanYan. Liouville type theorems for some conformally invariant fully nonlinear equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 219-225. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_3_219_0/

[1] Caffarelli, L. - Gidas, B. - Spruck, J., Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth. Comm. Pure Appl. Math., 42, 1989, 271-297. | MR 982351 | Zbl 0702.35085

[2] Caffarelli, L. - Nirenberg, L. - Spruck, J., The Dirichlet problem for nonlinear second-order elliptic equations, III: Functions of the eigenvalues of the Hessian. Acta Math., 155, 1985, 261-301. | MR 806416 | Zbl 0654.35031

[3] Chang, S.Y. A. - Gursky, M. - Yang, P., An a priori estimate for a fully nonlinear equation on four-manifolds. Preprint. | Zbl 1067.58028

[4] Chang, S.Y. A. - Gursky, M. - Yang, P., Entire solutions of a fully nonlinear equation. Preprint. | MR 2055838 | Zbl 1183.53035

[5] Chen, W. - Li, C., Classification of solutions of some nonlinear elliptic equations. Duke Math. J., 63, 1991, 615-622. | MR 1121147 | Zbl 0768.35025

[6] Gidas, B. - Ni, W.M. - Nirenberg, L., Symmetry and related properties via the maximum principle. Comm. Math. Phys., 68, 1979, 209-243. | MR 544879 | Zbl 0425.35020

[7] Gidas, B. - Spruck, J., Global and local behavior of positive solutions of nonlinear elliptic equations. Comm. Pure Appl. Math., 34, 1981, 525-598. | MR 615628 | Zbl 0465.35003

[8] Li, A. - Li, Y.Y., On some conformally invariant fully nonlinear equations. C. R. Acad. Sci. Paris, Ser. I, 334, 2002, 1-6. | MR 1957529 | Zbl 0998.58011

[9] Li, A. - Li, Y.Y., On some conformally invariant fully nonlinear equations. Comm. Pure Appl. Math., to appear. | MR 2706075 | Zbl 1155.35353

[10] Li, A. - Li, Y.Y., A general Liouville type theorem for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301239 v1 21 Jan 2003. | Zbl 1221.35149

[11] Li, A. - Li, Y.Y., Further results on Liouville type theorems for some conformally invariant fully nonlinear equations. arXiv:math.AP/0301254 v1 22 Jan 2003. | Zbl 1221.35149

[12] Li, A. - Li, Y.Y., On some conformally invariant fully nonlinear equations, Part II: Liouville, Harnack and Yamabe. In preparation. | Zbl 1216.35038

[13] Li, Y.Y. - Zhang, L., Liouville type theorems and Harnack type inequalities for semilinear elliptic equations. Journal d’Analyse Mathematique, to appear. | MR 2001065 | Zbl 1173.35477

[14] Li, Y.Y. - Zhu, M., Uniqueness theorems through the method of moving spheres. Duke Math. J., 80, 1995, 383-417. | MR 1369398 | Zbl 0846.35050

[15] Obata, M., The conjecture on conformal transformations of Riemannian manifolds. J. Diff. Geom., 6, 1971, 247-258. | MR 303464 | Zbl 0236.53042

[16] Viaclovsky, J., Conformal geometry, contact geometry, and the calculus of variations. Duke Math. J., 101, 2000, 283-316. | MR 1738176 | Zbl 0990.53035

[17] Viaclovsky, J., Conformally invariant Monge-Ampere equations: global solutions. Trans. Amer. Math. Soc., 352, 2000, 4371-4379. | MR 1694380 | Zbl 0951.35044