We discuss recent developments in the study of the homotopy classes for the Sobolev spaces . In particular, we report on the work of H. Brezis - Y. Li [5] and F.B. Hang - F.H. Lin [9].
@article{RLIN_2003_9_14_3_207_0, author = {Ha\"\i m Brezis}, title = {The fascinating homotopy structure of Sobolev spaces}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {14}, year = {2003}, pages = {207-217}, zbl = {1225.46024}, mrnumber = {2064267}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_3_207_0} }
Brezis, Haïm. The fascinating homotopy structure of Sobolev spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 207-217. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_3_207_0/
[1] The approximation problem for Sobolev maps between manifolds. Acta Math., 167, 1991, 153-206. | MR 1120602 | Zbl 0756.46017
,[2] Lifting in Sobolev spaces. J. Analyse Math., 80, 2000, 37-86. | MR 1771523 | Zbl 0967.46026
- - ,[3] How to recognize constant functions. Connections with Sobolev spaces. Uspekhi Mat. Nauk (volume in honor of M. Vishik), 57, 2002, 59-74. | MR 1942116 | Zbl 1072.46020
,[4] Large solutions for harmonic maps in two dimensions. Comm. Math. Phys., 92, 1983, 203-215. | MR 728866 | Zbl 0532.58006
- ,[5] Topology and Sobolev spaces. J. Funct. Anal., 183, 2001, 321-369. | MR 1844211 | Zbl 1001.46019
- ,[6] Degree and Sobolev spaces. Topological methods in Nonlinear Analysis, 13, 1999, 181-190. | MR 1742219 | Zbl 0956.46024
- - - ,[7] Degree theory and BMO, Part I: compact manifolds without boundaries. Selecta Math., 1, 1995, 197-263. | MR 1354598 | Zbl 0852.58010
- ,[8] A priori estimate for harmonic mappings. J. Reine Angew. Math., 336, 1982, 124-164. | MR 671325 | Zbl 0508.58015
- ,[9] Topology of Sobolev mappings II. Acta Math., to appear. | MR 2082396 | Zbl 1061.46032
- ,[10] Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents. Comm. Math. Phys., 179, 1996, 257-263. | MR 1395224 | Zbl 0860.35131
- ,[11] Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom., 18, 1983, 253-268. | MR 710054 | Zbl 0547.58020
- ,[12] Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math., 160, 1988, 1-17. | MR 926523 | Zbl 0647.58016
,