The fascinating homotopy structure of Sobolev spaces
Brezis, Haïm
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 207-217 / Harvested from Biblioteca Digitale Italiana di Matematica

We discuss recent developments in the study of the homotopy classes for the Sobolev spaces W1,pM;N. In particular, we report on the work of H. Brezis - Y. Li [5] and F.B. Hang - F.H. Lin [9].

Publié le : 2003-09-01
@article{RLIN_2003_9_14_3_207_0,
     author = {Ha\"\i m Brezis},
     title = {The fascinating homotopy structure of Sobolev spaces},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {207-217},
     zbl = {1225.46024},
     mrnumber = {2064267},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_3_207_0}
}
Brezis, Haïm. The fascinating homotopy structure of Sobolev spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 207-217. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_3_207_0/

[1] Bethuel, F., The approximation problem for Sobolev maps between manifolds. Acta Math., 167, 1991, 153-206. | MR 1120602 | Zbl 0756.46017

[2] Bourgain, J. - Brezis, H. - Mironescu, P., Lifting in Sobolev spaces. J. Analyse Math., 80, 2000, 37-86. | MR 1771523 | Zbl 0967.46026

[3] Brezis, H., How to recognize constant functions. Connections with Sobolev spaces. Uspekhi Mat. Nauk (volume in honor of M. Vishik), 57, 2002, 59-74. | MR 1942116 | Zbl 1072.46020

[4] Brezis, H. - Coron, J.-M., Large solutions for harmonic maps in two dimensions. Comm. Math. Phys., 92, 1983, 203-215. | MR 728866 | Zbl 0532.58006

[5] Brezis, H. - Li, Y.Y., Topology and Sobolev spaces. J. Funct. Anal., 183, 2001, 321-369. | MR 1844211 | Zbl 1001.46019

[6] Brezis, H. - Li, Y.Y. - Mironescu, P. - Nirenberg, L., Degree and Sobolev spaces. Topological methods in Nonlinear Analysis, 13, 1999, 181-190. | MR 1742219 | Zbl 0956.46024

[7] Brezis, H. - Nirenberg, L., Degree theory and BMO, Part I: compact manifolds without boundaries. Selecta Math., 1, 1995, 197-263. | MR 1354598 | Zbl 0852.58010

[8] Giaquinta, M. - Hildebrandt, S., A priori estimate for harmonic mappings. J. Reine Angew. Math., 336, 1982, 124-164. | MR 671325 | Zbl 0508.58015

[9] Hang, F.B. - Lin, F.H., Topology of Sobolev mappings II. Acta Math., to appear. | MR 2082396 | Zbl 1061.46032

[10] Rubinstein, J. - Sternberg, P., Homotopy classification of minimizers of the Ginzburg-Landau energy and the existence of permanent currents. Comm. Math. Phys., 179, 1996, 257-263. | MR 1395224 | Zbl 0860.35131

[11] Schoen, R. - Uhlenbeck, K., Boundary regularity and the Dirichlet problem for harmonic maps. J. Differential Geom., 18, 1983, 253-268. | MR 710054 | Zbl 0547.58020

[12] White, B., Homotopy classes in Sobolev spaces and the existence of energy minimizing maps. Acta Math., 160, 1988, 1-17. | MR 926523 | Zbl 0647.58016