Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems
Arkhipova, Arina A.
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 91-108 / Harvested from Biblioteca Digitale Italiana di Matematica

It is proved that a function can be estimated in the norm with a higher degree of summability if it satisfies some integral relations similar to the reverse Hölder inequalities (quasireverse Hölder inequalities). As an example, we apply this result to derive an a priori estimate of the Hölder norm for a solution of strongly nonlinear elliptic system.

Si prova che una funzione può essere stimata nella norma con un grado più alto di sommabilità se soddisfa alcune relazioni integrali simili alle disuguaglianze di Hölder inverse (disuguaglianze di Hölder quasi-inverse). Come esempio applichiamo questo risultato per desumere una stima a priori di una norma di Hölder per una soluzione di un sistema ellittico fortemente non lineare.

Publié le : 2003-06-01
@article{RLIN_2003_9_14_2_91_0,
     author = {Arina A. Arkhipova},
     title = {Quasireverse H\"older inequalities and a priori estimates for strongly nonlinear systems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {91-108},
     zbl = {1225.35082},
     mrnumber = {2053660},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_2_91_0}
}
Arkhipova, Arina A. Quasireverse Hölder inequalities and a priori estimates for strongly nonlinear systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 91-108. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_2_91_0/

[1] Gehring, F.W., The Lp-integrability of the partial derivatives of a quasi conformal mapping. Acta Math., 130, 1973, 265-277. | MR 402038 | Zbl 0258.30021

[2] Giaquinta, M. - Modica, G., Regularity results for some classes of higher order non-linear elliptic systems. J. für Reine u. Angew. Math., 311/312, 1979, 145-169. | MR 549962 | Zbl 0409.35015

[3] Stredulinsky, E.W., Higher integrability from reverce Hölder inequalities. Indiana Univ. Math. J., 29, 3, 1980, 408-417. | MR 570689 | Zbl 0442.35064

[4] Arkhipova, A.A., Reverse Hölder inequalities with boundary integrals and Lp-estimates for solution of nonlinear elliptic and parabolic boundary-value problems. Advances in Math. Sci. Translations, Ser. 2, 164, 1995, 15-42. | MR 1334137 | Zbl 0838.35021

[5] Arkhipova, A.A. - Ladyzhenskaya, O.A., On a modification of Gehring lemma. Zapiski Nauchn, Semin. POMI, St-Petersburg, 259, 1999, 7-18. | Zbl 0979.35062

[6] Arkhipova, A.A., On the regularity of the solution of the Neumann problem for quasilinear parabolic systems. Russian Acad. Sci. Izv. Math., 45, 1995, 231-253. | MR 1307308 | Zbl 0857.35054

[7] Giaquinta, M., Multiple integrals in the Calculus of Variations and Nonlinear Elliptic Systems. Annals of Math., Studies105, Princeton Univ. Press, Princeton1983. | MR 717034 | Zbl 0516.49003

[8] Giaquinta, M. - Giusti, E., Non linear elliptic systems with Quadratic growth. Manuscripta Math., 24, 1978, 323-349. | MR 481490 | Zbl 0378.35027

[9] Kufner, A. - John, O. - Fučik, S., Functional Spases. Academia, Prague 1977.

[10] Frehse, J., On two-dimensional quasi-linear elliptic systems. Manuscripta Math., 28, 1979, 21-50. | MR 535693 | Zbl 0415.35025

[11] Hamburger, C., A new partial regularity proof for solutions of nonlinear elliptic systems. Manuscripta Math., 95, n. 1, 1998, 11-31. | MR 1492366 | Zbl 0901.35013

[12] Troianiello, G.M., Elliptic differential equations and obstacle problems. Plenum, New York-London1987. | MR 1094820 | Zbl 0655.35002