Derivation of the Hille-Hardy type formulae and operational methods
Dattoli, Giuseppe
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 85-90 / Harvested from Biblioteca Digitale Italiana di Matematica

The Hille-Hardy formula is a bilinear generating function, involving products of Laguerre polynomials. We use the point of view, developed in previous publications, to propose an operational method which allows a fairly direct derivation of this kind of formulae.

La formula di Hille-Hardy è una funzione generatrice bilineare relativa a prodotti di polinomi di Hermite. In questo lavoro si utilizza il punto di vista sviluppato in precedenti pubblicazioni, per proporre una derivazione diretta di tale tipo di formula.

Publié le : 2003-06-01
@article{RLIN_2003_9_14_2_85_0,
     author = {Giuseppe Dattoli},
     title = {Derivation of the Hille-Hardy type formulae and operational methods},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {85-90},
     zbl = {1072.33006},
     mrnumber = {2053659},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_2_85_0}
}
Dattoli, Giuseppe. Derivation of the Hille-Hardy type formulae and operational methods. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 85-90. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_2_85_0/

[1] Dattoli, G., Hermite-Bessel and Laguerre Bessel Functions, a by-product of the monomiality principle. In: D. Cocolicchio - G. Dattoli - H.M. Srivastava (eds.), Proceedings of the Workshop on Special Functions and Applications in Mathematics and Physics (Melfi, 9-12 May 1999). Aracne Editrice, Roma 2000. | MR 1857483 | Zbl 1022.33006

[2] Andrews, L.C., Special Functions for Applied Mathematicians and Engineers. Mac Millan, New York1985. | MR 779819 | Zbl 0920.33001

[3] Dattoli, G., Generalized Polynomials, Operational Identities and their Applications. J. Comput. Appl. Math., 118, 2000, 111-123. | MR 1765943 | Zbl 1016.33012

[4] Srivastava, H.M. - Manocha, H.L., A Treatise on Generating Functions. J. Wiley, New York 1984. For earlier derivations by Miller and Lebedeff, see e.g. Erdélyi, A. et al., Bateman Manuscript project, Vol. 2. | MR 750112 | Zbl 0535.33001

[5] Dattoli, G., Bilateral Generating Functions and Operational Methods. J. Math. Anal. and Appl., to appear. | MR 1907139 | Zbl 1073.33008

[6] Krinsky, S. - Gluckstern, R.L., Analysis of statistical correlations and intensity spiking in the self-amplified spontaneous-emission free-electron laser. Phys. Rev. ST Accel. Beams, 6(5), 2003, 050701-050710.

[7] Dattoli, G. - Ricci, P.E., Multi-index Polynomials and Applications to Statistical Problems. To appear.