L-L2 weighted estimate for the wave equation with potential
Georgiev, Vladimir ; Visciglia, Nicola
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 109-135 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider a potential type perturbation of the three dimensional wave equation and we establish a dispersive estimate for the associated propagator. The main estimate is proved under the assumption that the potential V0 satisfies VxC1+x2+ϵ0, where ϵ0>0.

Si considera l’equazione delle onde perturbata con un potenziale in dimensione tre e si provano delle stime dispersive per il propagatore associato. La stima principale è ottenuta sotto la condizione che il potenziale V0 soddisfi VxC1+x2+ϵ0, dove ϵ0>0.

Publié le : 2003-06-01
@article{RLIN_2003_9_14_2_109_0,
     author = {Vladimir Georgiev and Nicola Visciglia},
     title = {$L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {109-135},
     zbl = {1072.35111},
     mrnumber = {2053661},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_2_109_0}
}
Georgiev, Vladimir; Visciglia, Nicola. $L^{\infty}- L^{2}$ weighted estimate for the wave equation with potential. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 109-135. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_2_109_0/

[1] Agmon, S., Spectral properties of Schrödinger operators and scattering theory. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 2(2), 1975, 151-218. | MR 397194 | Zbl 0315.47007

[2] Alsholm, P. - Schmidt, G., Spectral and scattering theory for Schrödinger operators. Arch. Rational Mech. Anal., 40, 1970/1971, 281-311. | MR 279631 | Zbl 0226.35076

[3] Barcelo, J.A. - Ruiz, A. - Vega, L., Weighted estimates for the Helmholtz equation and some applications. J. Funct. Anal., 150(2), 1997, 356-382. | MR 1479544 | Zbl 0890.35028

[4] Beals, M. - Strauss, W., Lp estimates for the wave equation with a potential. Comm. Partial Differential Equations, 18(7-8), 1993, 1365-1397. | MR 1233198 | Zbl 0795.35059

[5] Ben-Artzi, M. - Devinatz, A., Resolvent estimates for a sum of tensor products with applications to the spectral theory of differential operators. J. Analyse Math., 43, 1983/84, 215-250. | MR 777419 | Zbl 0591.47034

[6] Burq, N. - Planchon, F. - Stalker, J. - Shadi Tahvildar-Zadeh, A., Strichartz estimates for the Wave and Schrödinger Equations with the Inverse-Square Potential. Preprint, 2002. | Zbl 1030.35024

[7] Cuccagna, S., On the wave equation with a potential. Comm. Partial Differential Equations, 25(7-8), 2000, 1549-1565. | MR 1765158 | Zbl 0951.35021

[8] Ikebe, T., Eigenfunction expansions associated with the Schroedinger operators and their applications to scattering theory. Arch. Rational Mech. Anal., 5, 1960, 1-34. | MR 128355 | Zbl 0145.36902

[9] Kerler, C., Perturbations of the Laplacian with variable coefficients in exterior domains and differentiability of the resolvent. Asymptot. Anal., 19(3-4), 1999, 209-232. | MR 1696215 | Zbl 0942.35052

[10] Planchon, F. - Stalker, J. - Shadi Tahvildar-Zadeh, A., lp estimates for the wave equation with the inverse-square potential. Discrete Contin. Dynam. Systems, v. 9, n. 2, 2003, 427-442. | MR 1952384 | Zbl 1031.35092

[11] Reed, M. - Simon, B., Methods of modern mathematical physics. II. Fourier analysis, self-adjointness. Academic Press [Harcourt Brace Jovanovich Publishers], New York 1975. | MR 493420 | Zbl 0242.46001

[12] Robert, D., Autour de l’approximation semi-classique. Progress in Mathematics, 68, Birkhäuser Boston Inc., Boston, MA, 1987. | MR 897108 | Zbl 0621.35001

[13] Shatah, J. - Struwe, M., Geometric wave equations. Courant Lecture Notes in Mathematics, 2, New York University Courant Institute of Mathematical Sciences, New York 1998. | MR 1674843 | Zbl 0993.35001

[14] Sjöstrand, J. - Zworski, M., Asymptotic distribution of resonances for convex obstacles. Acta Math., 183(2), 1999, 191-253. | MR 1738044 | Zbl 0989.35099

[15] Strichartz, R.S., Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J., 44(3), 1977, 705-714. | MR 512086 | Zbl 0372.35001

[16] Vainberg, B.R., Asymptotic methods in equations of mathematical physics. (translated from the Russian by E. Primrose). Gordon & Breach Science Publishers, New York1989. | MR 1054376 | Zbl 0743.35001

[17] Visciglia, N., About the Strichartz estimate and the dispersive estimate. C.R. Acad. Bulgare Sci., 55(5), 2002, 9-14. | MR 1938823 | Zbl 1004.35027