Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena
Gouin, Henri ; Ruggeri, Tommaso
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003), p. 69-83 / Harvested from Biblioteca Digitale Italiana di Matematica

In the present paper we compare the theory of mixtures based on Rational Thermomechanics with the one obtained by Hamilton principle. We prove that the two theories coincide in the adiabatic case when the action is constructed with the intrinsic Lagrangian. In the complete thermodynamical case we show that we have also coincidence in the case of low temperature when the second sound phenomena arises for superfluid Helium and crystals.

Nel presente lavoro noi confrontiamo la teoria delle miscele basata sulla Termomeccanica Razionale con quella ottenuta da un principio di Hamilton. Noi proviamo che le due teorie coincidono nel caso adiabatico quando l’azione è costruita mediante la Lagrangiana intrinseca. Nel caso termodinamico completo si dimostra la coincidenza delle due teorie se ci si limita nel range di basse temperature dove i fenomeni di secondo suono sono presenti per l’Elio superfluido e nei cristalli.

Publié le : 2003-03-01
@article{RLIN_2003_9_14_1_69_0,
     author = {Henri Gouin and Tommaso Ruggeri},
     title = {Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {14},
     year = {2003},
     pages = {69-83},
     zbl = {1225.76045},
     mrnumber = {2057275},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_1_69_0}
}
Gouin, Henri; Ruggeri, Tommaso. Hamiltonian principle in the binary mixtures of Euler fluids with applications to the second sound phenomena. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 69-83. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_1_69_0/

[1] Truesdell, C., Sulle basi della termomeccanica. Nota II. Atti Acc. Lincei Rend. fis., s. 8, v. 21, 1957, 158-166. | Zbl 0098.21002

[2] Müller, I., A new approach to thermodynamics of simple mixtures. Zeitschrift für Naturforschung, 28a, 1973, 1801.

[3] Hutter, K. - Müller, I., On mixtures of relativistic fluids. Helvetica physica Acta, 48, 1975, 675.

[4] Dreyer, W., Zur Thermodynamik von Helium II - Superfluides Helium mit und ohne Wirbellinien als binäre Mischung. Dissertation Technische Universität, Berlin 1983.

[5] Müller, I., Thermodynamics. Pitman, New York1985. | Zbl 0637.73002

[6] Landau, L. - Lifchsitz, E., Mécanique des Fluides. Mir, Moscow 1971, 418 pp.

[7] Putterman, S., Super Fluid Hydrodynamics. Elsevier, New York1974.

[8] Ruggeri, T., The binary mixtures of Euler fluids: A unified theory of second sound phenomena. In: B. Straughan - R. Greve - H. Ehrentraut - Y. Wang (eds.), Continuum Mechanics and Applications in Geophysics and the Environment. Springer-Verlag, Berlin 2001, 79 pp. | MR 1882568

[9] Gavrilyuk, S. - Gouin, H. - Perepechko, Yu., Hyperbolic models of homogeneous two-fluid mixtures. Meccanica, 33, 1998, 161-175. | MR 1626200 | Zbl 0923.76335

[10] Gouin, H. - Gavrilyuk, S., Hamilton’s principle and Rankine-Hugoniot conditions for general motions of mixtures. Meccanica, 34, 1999, 39-47. | MR 1683706 | Zbl 0947.76090

[11] Gavrilyuk, S. - Gouin, H., A new form of governing equations of fluids arising from Hamilton’s principle. Int. J. Eng. Sci., 37 (12), 1999, 1485-1520. | MR 1709736 | Zbl 1210.76009

[12] Gouin, H., Variational theory of mixtures in continuum mechanics. Eur. J. Mech. B/Fluids, 9, 1990, 469. | MR 1075270 | Zbl 0704.76001

[13] Müller, I. - Ruggeri, T., Rational Extended Thermodynamics. 2nd ed., Springer Tracts in Natural Philosophy, 37, Springer-Verlag, New York 1998. | MR 1632151 | Zbl 0895.00005

[14] Ruggeri, T. - Muracchini, A. - Seccia, L., A Continuum Approach to Phonon Gas and Shape Changes of Second Sound via Shock Waves Theory. Nuovo Cimento D, 16, 1994, 15.

[15] Ruggeri, T. - Muracchini, A. - Seccia, L., Shock Waves and Second Sound in a Rigid Heat Conductor: A Critical Temperature for NaF and Bi. Phys. Rev. Lett., 64, 1990, 2640.

[16] Ruggeri, T. - Muracchini, A. - Seccia, L., Second Sound and Characteristic Temperature in Solids. Phys. Rev. B, 54, 1996, 332-339.

[17] Ruggeri, T. - Muracchini, A. - Seccia, L., Second Sound Propagation in Superfluid Helium via Extended Thermodynamics. Lecture notes WASCOM 2001. | MR 1953413

[18] Serrin, J., Mathematical principles of classical fluid mechanics. Encyclopedia of Physics, vol. VIII/I, Springer-Verlag, Berlin1959, 125-263. | MR 108116