Following Morrey [14] we associate to any measurable symmetric matrix valued function such that and to any another symmetric matrix valued function with and satisfying The crucial property of is that , if . We study the properties of as a function of and . In particular, we show that, if , , and then .
Seguendo Morrey [14], ad ogni matrice simmetrica a coefficienti misurabili, tale che e ad ogni si può associare un'altra matrice simmetrica con e soddisfacente La principale proprietà di è che , se . Si studiano le proprietà di come funzione di e di . In particolare, si dimostra che, se , , and then .
@article{RLIN_2003_9_14_1_33_0,
author = {Maria Rosaria Formica and Carlo Sbordone},
title = {On the $G$-convergence of Morrey operators},
journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
volume = {14},
year = {2003},
pages = {33-49},
zbl = {1105.35030},
mrnumber = {2057273},
language = {en},
url = {http://dml.mathdoc.fr/item/RLIN_2003_9_14_1_33_0}
}
Formica, Maria Rosaria; Sbordone, Carlo. On the $G$-convergence of Morrey operators. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 14 (2003) pp. 33-49. http://gdmltest.u-ga.fr/item/RLIN_2003_9_14_1_33_0/
[1] , Quasiharmonic fields and Beltrami operators. Comm. Math. Univ. Carolinae, 43, 2, 2002, 363-377. | MR 1922134 | Zbl 1069.35024
[2] , Un esempio di estremali discontinue per un problema variazionale di tipo ellittico. Boll. U.M.I., 1, 1968, 135-137. | MR 227827 | Zbl 0155.17603
[3] - , On the convergence of Laplace-Beltrami operators associated to quasiregular mappings. Studia mathematica, t. LXXXVI, 1987, 189-204. | MR 917047 | Zbl 0646.30024
[4] , On the -convergence of Laplace-Beltrami operators in the plane. Annales Academiae Scientiarum Fennicae Matematica, vol. 25, 2000, 423-438. | MR 1762427 | Zbl 0955.30016
[5] , Degenerate Elliptic Operators with coefficients in EXP. Ph.D. thesis, Università di Napoli «Federico II», 2001. | Zbl 1053.47510
[6] , Beltrami operators in the plane. Preprint n. 6, Aracne editrice, Roma2002. | MR 1979563 | Zbl 1098.47517
[7] - , Optimal bounds for conduction in two-dimensional, two-phase, anisotropic media. In: - (eds.), «Nonclassical» continuum mechanics. London, Math. Soc. Lecture Notes Series, 122, Cambridge 1987, 197-212. | MR 926503 | Zbl 0668.73018
[8] , Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. of Math. Studies, 105, Princeton Univ. Press, 1983. | MR 717034 | Zbl 0516.49003
[9] - , Sharp upper bounds for the degree of regularity of the solutions to an elliptic equation. Comm. P.D.E., 27, 5-6, 2002, 945-952. | MR 1916553 | Zbl 1019.35021
[10] - , Quasiharmonic fields. Ann. Inst. H. Poincaré - AN 18, 5, 2001, 519-572. | MR 1849688 | Zbl 1068.30011
[11] - - , Nowhere continuous solutions to elliptic systems. Comm. Math. Univ. Carolinae, 30, 1, 1989, 33-43. | MR 995699 | Zbl 0691.35024
[12] , Regularity of solutions of quasilinear elliptic systems. Russian Math. Survey, 33, 1978, 1-52. | MR 510669 | Zbl 0413.35033
[13] , Finding equation from solutions. Draft1999.
[14] , On the solution of quasilinear elliptic partial differential equations. Trans. Amer. Math. Soc., 43, 1938, 126-166. | JFM 64.0460.02
[15] , Compacité par Compensation. Ann. Sc. Norm. Pisa, 5, 1978, 489-507. | MR 506997 | Zbl 0399.46022
[16] - , On the Hölder Continuity of Solutions of Second Order Elliptic Equations in two Variables. Ann. Sc. Norm. Pisa, 26, 1972, 391-402. | MR 361422 | Zbl 0237.35028
[17] , Singular solutions to linear elliptic systems. Comm. Math. Univ. Carolinae, 25, 1984, 273-281. | MR 768815 | Zbl 0564.35008
[18] , Sulla convergenza di soluzioni di equazioni paraboliche ed ellittiche. Ann. Sc. Norm Sup. Pisa, vol. 22, fasc. 4, 1968, 571-597. | MR 240443 | Zbl 0174.42101
[19] , Some convergence problems. Symposia Mathematica, XVIII, 1976, 391-397. | MR 509184 | Zbl 0332.46020
[20] , Homogéneization et compacité par compensation. Cours Peccot, Collège de France, 1977. | Zbl 0544.47042