We study the tangential Cauchy-Riemann equations for -forms on quadratic manifolds. We discuss solvability for data in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.
@article{RLIN_2002_9_13_3-4_285_0, author = {Marco M. Peloso and Fulvio Ricci}, title = {Tangential Cauchy-Riemann equations on quadratic manifolds}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {285-294}, zbl = {1225.32037}, mrnumber = {1984107}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_285_0} }
Peloso, Marco M.; Ricci, Fulvio. Tangential Cauchy-Riemann equations on quadratic manifolds. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 285-294. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_285_0/
[1] Integral represantation of differential forms on Cauchy-Riemann manifolds and the theory of -functions. Russian Math. Surveys, 39:3, 1984, 41-118. | MR 747791 | Zbl 0589.32035
- ,[2] | MR 1211412 | Zbl 0760.32001
, Manifolds and the Tangential Cauchy-Riemann Complex. CRC Press, Boca Raton1991.[3] | Zbl 0963.32001
- , Partial Differential Equations in Several Complex Variables. International Press, Providence 2001.[4] 57, Princeton U. Press, Princeton 1972. | MR 461588 | Zbl 0247.35093
- , The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Studies,[5] Estimates for the complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27, 1974, 429-522. | MR 367477 | Zbl 0293.35012
- ,[6] An example of a smooth differential operator without solution. Ann. Math., 66, 1957, 155-158. | MR 88629 | Zbl 0078.08104
,[7] Analysis of the Kohn Laplacian on quadratic manifolds. Preprint 2001. | MR 2003351 | Zbl 1043.32021
- ,[8] Group representation on Hilbert spaces defined in terms of -cohomology on the Silov boundary of a Siegel domain. Pac. J. Math., 6, 1976, 193-207. | MR 422517 | Zbl 0354.22018
- ,[9] On the absence of Poincaré lemma in tangential Chauchy-Riemann complexes. Ann. Scuola Norm. Sup. Pisa, 8, 1981, 365-404. | MR 634855 | Zbl 0482.35061
- - ,[10] Boundary of complex manifolds. Proc. Conf. on Complex Manifolds (Minneapolis, 1964). Springer-Verlag, New York1965, 81-94. | MR 175149 | Zbl 0166.36003
,[11] A remark on the Poincaré lemma in analytic complexes with nondegenerate Levi form. Comm. PDE, 7, 1982, 1467-1482. | MR 679951 | Zbl 0535.32005
,