Tangential Cauchy-Riemann equations on quadratic manifolds
Peloso, Marco M. ; Ricci, Fulvio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 285-294 / Harvested from Biblioteca Digitale Italiana di Matematica

We study the tangential Cauchy-Riemann equations ¯bu=ω for 0,q-forms on quadratic CR manifolds. We discuss solvability for data ω in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi form.

Publié le : 2002-12-01
@article{RLIN_2002_9_13_3-4_285_0,
     author = {Marco M. Peloso and Fulvio Ricci},
     title = {Tangential Cauchy-Riemann equations on quadratic  manifolds},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {285-294},
     zbl = {1225.32037},
     mrnumber = {1984107},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_285_0}
}
Peloso, Marco M.; Ricci, Fulvio. Tangential Cauchy-Riemann equations on quadratic  manifolds. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 285-294. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_285_0/

[1] Airapetyan, R.A. - Khenkin, G.M., Integral represantation of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions. Russian Math. Surveys, 39:3, 1984, 41-118. | MR 747791 | Zbl 0589.32035

[2] Boggess, A., CR Manifolds and the Tangential Cauchy-Riemann Complex. CRC Press, Boca Raton1991. | MR 1211412 | Zbl 0760.32001

[3] Chen, S. - Shaw, M., Partial Differential Equations in Several Complex Variables. International Press, Providence 2001. | Zbl 0963.32001

[4] Folland, G.B. - Kohn, J.J., The Neumann problem for the Cauchy-Riemann complex. Annals of Math. Studies, 57, Princeton U. Press, Princeton 1972. | MR 461588 | Zbl 0247.35093

[5] Folland, G.B. - Stein, E.M., Estimates for the ¯b complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27, 1974, 429-522. | MR 367477 | Zbl 0293.35012

[6] Lewy, H., An example of a smooth differential operator without solution. Ann. Math., 66, 1957, 155-158. | MR 88629 | Zbl 0078.08104

[7] Peloso, M.M. - Ricci, F., Analysis of the Kohn Laplacian on quadratic CR manifolds. Preprint 2001. | MR 2003351 | Zbl 1043.32021

[8] Rossi, H. - Vergne, M., Group representation on Hilbert spaces defined in terms of ¯b-cohomology on the Silov boundary of a Siegel domain. Pac. J. Math., 6, 1976, 193-207. | MR 422517 | Zbl 0354.22018

[9] Andreotti, A. - Fredricks, G. - Nacinovich, M., On the absence of Poincaré lemma in tangential Chauchy-Riemann complexes. Ann. Scuola Norm. Sup. Pisa, 8, 1981, 365-404. | MR 634855 | Zbl 0482.35061

[10] Kohn, J.J., Boundary of complex manifolds. Proc. Conf. on Complex Manifolds (Minneapolis, 1964). Springer-Verlag, New York1965, 81-94. | MR 175149 | Zbl 0166.36003

[11] Treves, F., A remark on the Poincaré lemma in analytic complexes with nondegenerate Levi form. Comm. PDE, 7, 1982, 1467-1482. | MR 679951 | Zbl 0535.32005