A family of holomorphic function spaces can be defined with reproducing kernels , obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the associated Poisson-like kernels: . In particular, we show boundedness of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological boundary of the cone.
@article{RLIN_2002_9_13_3-4_271_0, author = {Gustavo Garrig\'os}, title = {Poisson-like kernels in tube domains over light-cones}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {271-283}, zbl = {1225.32005}, mrnumber = {1984106}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_271_0} }
Garrigós, Gustavo. Poisson-like kernels in tube domains over light-cones. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 271-283. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_271_0/
[1] Estimates for the Bergman and Szegö projections in two symmetric domains of . Colloq. Math., 68, 1995, 81-100. | MR 1311766 | Zbl 0863.47018
- ,[2] Littlewood-Paley decompositions and Besov spaces related to symmetric cones. Univ. Orléans, preprint 2001.
- - - ,[3] Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z., 237, 2001, 31-59. | MR 1836772 | Zbl 0983.32001
- - - ,[4] Three related problems on Bergman spaces of tube domains over symmetric cones. Rend. Mat. Acc. Lincei, s. 9, v. 13, 2002, 183-197. | MR 1984099 | Zbl 1225.32012
,[5] | MR 1446489 | Zbl 0841.43002
- , Analysis on symmetric cones. Clarendon Press, Oxford 1994.[6] The multiplier problem for the ball. Ann. of Math., 94, 1971, 330-336. | MR 296602 | Zbl 0234.42009
,[7] Generalized Hardy spaces in tube domains over cones. Colloq. Math., 90 (2), 2001, 213-251. | MR 1876845 | Zbl 0999.42014
,[8] | MR 166596 | Zbl 0115.33101
- , Generalized functions I. Academic Press, New York 1964.[9] Équations de Cauchy-Riemann tangentielles associées a un domaine de Siegel. Ann. scient. Éc. Norm. Sup., 9, 1976, 31-80. | MR 445019 | Zbl 0398.32018
- ,[10] Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups. Actes, Congrès intern. math.1, 1970, 173-189. | MR 578903 | Zbl 0252.43022
,[11] | MR 1232192 | Zbl 0821.42001
, Harmonic Analysis. Princeton University Press, 1993.[12] | MR 304972 | Zbl 0232.42007
- , Fourier Analysis on Euclidean Spaces. Princeton University Press, 1971.[13] classes of holomorphic functions in tube domains. Proc. Nat. Acad. Sci. USA, 52, 1964, 1035-1039. | MR 179386 | Zbl 0126.09405
- - ,[14] Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math., 136, 1976, 1-59. | MR 480883 | Zbl 0356.32020
- ,