Every homogeneous circular convex domain (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group of all biholomorphic automorphisms of and its isotropy subgroup at the origin (a maximal compact subgroup of ). The group acts in a natural way on the compact dual of (a certain compactification of that generalizes the Riemann sphere in case is the unit disk in ). Various authors have studied the orbit structure of the -space , here we are interested in the Cauchy-Riemann structure of the -orbits in (which in general are only real-analytic submanifolds of ). Also, we discuss certain -orbits in the Grassmannian of all linear subspaces of that are closely related to the geometry of the bounded symmetric domain .
@article{RLIN_2002_9_13_3-4_243_0, author = {Wilhelm Kaup}, title = {Bounded symmetric domains and derived geometric structures}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {243-257}, zbl = {1098.32008}, mrnumber = {1984104}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_243_0} }
Kaup, Wilhelm. Bounded symmetric domains and derived geometric structures. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 243-257. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_243_0/
[1] Sur les transformations qui conservent le spectre. 13th International Conference on Banach Algebras (Blaubeuren 1997), de Gruyter, Berlin1998, 55-78. | MR 1656598 | Zbl 0932.46038
,[2] Sur une généralisation du groupe orthogonal à quatre variables. Arch. Math., 1, 1949, 282-287. | MR 29360 | Zbl 0032.10601
,[3] Le problème des modules pour les sous-espaces analytiques compacts d’un espace analytique donné. Ann. Inst. Fourier, 16, 1966, 1-95. | MR 203082 | Zbl 0146.31103
,[4] On the Geometry of Inner Ideals. J. of Algebra, 26, 1973, 1-9. | MR 367002 | Zbl 0285.17004
,[5] The Gelfand-Naimark theorem for JB*-triples. Duke Math. J., 53, 1986, 139-148. | MR 835800 | Zbl 0637.46049
- ,[6] Über die Darstellung der endlichen Gruppen durch lineare Substitutionen. I. Sitzungsberichte Königl. Preuss. Akad. Wiss., 1897, 994-1015. | JFM 28.0130.01
,[7] 364, Springer-Verlag, Berlin-Heidelberg-New York1973. | MR 407330 | Zbl 0293.46049
, Bounded symmetric homogeneous domains in infinite dimensional spaces. Lecture Notes in Mathematics, vol.[8] Linear algebraic groups in infinite dimensions. Ill. J. Math., 21, 1977, 666-674. | MR 460551 | Zbl 0385.22011
- ,[9] | MR 514561 | Zbl 0451.53038
, Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York-San Francisco-London1978.[10] A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z., 183, 1983, 503-529. | MR 710768 | Zbl 0519.32024
,[11] Über die Klassifikation der symmetrischen Hermiteschen Mannigfaltigkeiten unendlicher Dimension I, II. Math. Ann., 257, 1981, 463-483; 262, 1983, 503-529. | MR 639580 | Zbl 0482.32010
,[12] On Grassmannians associated with JB*-triples. Math. Z., 236, 2001, 567-584. | MR 1821305 | Zbl 0988.46048
,[13] On Symmetric Cauchy-Riemann Manifolds. Adv. in Math., 149, 2000, 145-181. | MR 1742704 | Zbl 0954.32016
- ,[14] On the CR-structure of compact group orbits associated with bounded symmetric domains. In preparation. | Zbl 1027.32032
- ,[15] An elementary approach to bounded symmetric domains. Rice Univ., Houston1969. | MR 261032 | Zbl 0217.10901
,[16] Realization of hermitian symmetric spaces as generalized half planes. Ann. of Math., 81, 1965, 265-288. | MR 174787 | Zbl 0137.27402
- ,[17] | Zbl 0175.48601
, Symmetric Spaces I/II. W. A. Benjamin, Inc., New York-Amsterdam1969.[18] 460, Springer-VerlagBerlin-Heidelberg-New York1975. | MR 444721 | Zbl 0301.17003
, Jordan Pairs. Lecture Notes in Mathematics, vo.[19] Bounded symmetric domains and Jordan pairs. Mathematical Lectures, University of California at Irvine, Irvine1977.
,[20] On the geometric algebra of the octave planes. Indag. Math., 24, 1962, 451-468. | MR 142045 | Zbl 0113.35903
,[21] On orbits in a compact hermitian symmetric space. Am. J. Math., 90, 1968, 657-680. | MR 245827 | Zbl 0181.24304
,[22] The action of a real semisimple group on a complex flag manifold. I: Orbit structure and holomorphic arc components. Bull. Am. Math., 75, 1969, 1121-1247. | MR 251246 | Zbl 0183.50901
,[23] Fine Structure of Hermitian Symmetric Spaces. In: - (eds.), Symmetric Spaces. Pure and Applied Mathematics, 8, Marcel Dekker Inc., New York 1972, 271- 357. | MR 404716 | Zbl 0257.32014
, , Symmetric Banach Manifolds and Jordan C*-Algebras. North-Holland1985.