A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold and a real Lie group of holomorphic automorphisms of . The question we study is, for a holomorphic function on , to evaluate the integral of over a -orbit by using the harmonic analysis of . When is an annulus in the complex plane and the rotation group, it is solved by a classical formula which is sometimes called Gutzmer’s formula. We establish a generalization of it when is a -invariant domain in the complexification of a Riemannian symmetric space .
@article{RLIN_2002_9_13_3-4_233_0, author = {Jacques Faraut}, title = {Formule de Gutzmer pour la complexification d'une espace Riemannien sym\'etrique}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {233-241}, zbl = {1116.43006}, mrnumber = {1984103}, language = {fr}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_233_0} }
Faraut, Jacques. Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 233-241. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_233_0/
[1] On Stein extensions of real symmetric spaces. Math. Ann., 286, 1990, 1-12. | MR 1032920 | Zbl 0681.32022
- ,[2] Invariant domains in the complexification of a non-compact Riemannian symmetric space. Preprint, 2001. | Zbl 1018.32030
,[3] | MR 1280714 | Zbl 0809.53057
, Geometric Analysis on Symmetric Spaces. A.M.S., 1994.[4] Holomorphic aspects of representations: (I) automorphic functions. Preprint, 2001. | Zbl 1053.22009
- ,[5] Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Scient. Éc. Norm. Sup., 11, 1978, 167-210. | MR 510548 | Zbl 0452.43011
,[6] L’espace de Hardy d’un domaine de Reinhardt généralisé. J. Funct. Anal., 60, 1985, 309-340. | MR 780501 | Zbl 0578.32009
,[7] | Zbl 0123.30104
- , Fourier transforms in the complex domain. A.M.S., 1934.[8] | Zbl 0028.20801
, Théorie des fonctions. Masson, 1966.