Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique
Faraut, Jacques
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 233-241 / Harvested from Biblioteca Digitale Italiana di Matematica

A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold Ω and a real Lie group G of holomorphic automorphisms of Ω. The question we study is, for a holomorphic function f on Ω, to evaluate the integral of f2 over a G-orbit by using the harmonic analysis of G. When Ω is an annulus in the complex plane and G the rotation group, it is solved by a classical formula which is sometimes called Gutzmer’s formula. We establish a generalization of it when Ω is a G-invariant domain in the complexification of a Riemannian symmetric space G/K.

Publié le : 2002-12-01
@article{RLIN_2002_9_13_3-4_233_0,
     author = {Jacques Faraut},
     title = {Formule de Gutzmer pour la complexification d'une espace Riemannien sym\'etrique},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {233-241},
     zbl = {1116.43006},
     mrnumber = {1984103},
     language = {fr},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_233_0}
}
Faraut, Jacques. Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 233-241. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_233_0/

[1] Akhiezer, D.N. - Gindikin, S.G., On Stein extensions of real symmetric spaces. Math. Ann., 286, 1990, 1-12. | MR 1032920 | Zbl 0681.32022

[2] Geatti, L., Invariant domains in the complexification of a non-compact Riemannian symmetric space. Preprint, 2001. | Zbl 1018.32030

[3] Helgason, S., Geometric Analysis on Symmetric Spaces. A.M.S., 1994. | MR 1280714 | Zbl 0809.53057

[4] Krötz, B. - Stanton, R.J., Holomorphic aspects of representations: (I) automorphic functions. Preprint, 2001. | Zbl 1053.22009

[5] Lassalle, M., Séries de Laurent des fonctions holomorphes dans la complexification d’un espace symétrique compact. Ann. Scient. Éc. Norm. Sup., 11, 1978, 167-210. | MR 510548 | Zbl 0452.43011

[6] Lassalle, M.,L’espace de Hardy d’un domaine de Reinhardt généralisé. J. Funct. Anal., 60, 1985, 309-340. | MR 780501 | Zbl 0578.32009

[7] Paley, R.E. - Wiener, N., Fourier transforms in the complex domain. A.M.S., 1934. | Zbl 0123.30104

[8] Valiron, G., Théorie des fonctions. Masson, 1966. | Zbl 0028.20801