Contact and conformal maps on Iwasawa N groups
Cowling, Michael ; De Mari, Filippo ; Korányi, Adam ; Reimann, Hans Martin
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 219-232 / Harvested from Biblioteca Digitale Italiana di Matematica

The action of the conformal group O1,n+1 on Rn may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a C4 map between domains U and V in Rn whose differential is a (variable) multiple of a (variable) isometry at each point of U is the restriction to U of a transformation xgx, for some g in O1,n+1. In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group G on the space G/P , where P is a parabolic subgroup. We solve this problem for the cases where G is SL(3,R or Sp2,R and P is a minimal parabolic subgroup.

Publié le : 2002-12-01
@article{RLIN_2002_9_13_3-4_219_0,
     author = {Michael Cowling and Filippo De Mari and Adam Kor\'anyi and Hans Martin Reimann},
     title = {Contact and conformal maps on Iwasawa N groups},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {219-232},
     zbl = {1225.22012},
     mrnumber = {1984102},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_219_0}
}
Cowling, Michael; De Mari, Filippo; Korányi, Adam; Reimann, Hans Martin. Contact and conformal maps on Iwasawa N groups. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 219-232. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_219_0/

[1] Bertram, W., The geometry of Jordan and Lie structures. Lecture Notes in Math., vol. 1754, Springer-Verlag, Berlin-Heidelberg-New York2001. | MR 1809879 | Zbl 1014.17024

[2] Bertram, W. - Hilgert, J., Characterization of the Kantor-Koecher-Tits algebra by a generalized Ahlfors operator. J. Lie Theory, vol. 11, n. 2, 2001, 415-426. | MR 1851798 | Zbl 1049.53037

[3] Gehring, F.W., Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., vol. 103, 1962, 353-393. | MR 139735 | Zbl 0113.05805

[4] Gindikin, S. - Kaneyuki, S., On the automorphism group of the generalized conformal structure of a symmetric R-space. Differential Geom. Appl., vol. 8, n. 1, 1998, 21-33. | MR 1601542 | Zbl 0914.53029

[5] Goncharov, A.B., Generalized conformal structures on manifolds. Selected translations. Selecta Math. Soviet., vol. 6, n. 4, 1987, 307-340. | MR 925263 | Zbl 0632.53038

[6] Korányi, A. - Reimann, H.M., Quasiconformal mappings on the Heisenberg group. Invent. Math., vol. 80, n. 2, 1985, 309-338. | MR 788413 | Zbl 0567.30017

[7] Nevanlinna, R., On differentiable mappings. In: R. Nevanlinna et al. (eds.), Analytic functions. Princeton Math. Series, 24, Princeton Univ. Press, Princeton, N.J. 1960, 3-9. | MR 116280 | Zbl 0100.35701

[8] Pansu, P., Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (2), vol. 129, n. 1, 1989, 1-60. | MR 979599 | Zbl 0678.53042

[9] Tanaka, N., On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ., vol. 10, 1970, 1-82. | MR 266258 | Zbl 0206.50503

[10] Yamaguchi, K., Differential systems associated with simple graded Lie algebras. In: Progress in differential geometry. Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo1993, 413-494. | MR 1274961 | Zbl 0812.17018