The action of the conformal group on may be characterized in differential geometric terms, even locally: a theorem of Liouville states that a map between domains and in whose differential is a (variable) multiple of a (variable) isometry at each point of is the restriction to of a transformation , for some in . In this paper, we consider the problem of characterizing the action of a more general semisimple Lie group on the space , where is a parabolic subgroup. We solve this problem for the cases where is or and is a minimal parabolic subgroup.
@article{RLIN_2002_9_13_3-4_219_0, author = {Michael Cowling and Filippo De Mari and Adam Kor\'anyi and Hans Martin Reimann}, title = {Contact and conformal maps on Iwasawa N groups}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {219-232}, zbl = {1225.22012}, mrnumber = {1984102}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_219_0} }
Cowling, Michael; De Mari, Filippo; Korányi, Adam; Reimann, Hans Martin. Contact and conformal maps on Iwasawa N groups. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 219-232. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_219_0/
[1] 1754, Springer-Verlag, Berlin-Heidelberg-New York2001. | MR 1809879 | Zbl 1014.17024
, The geometry of Jordan and Lie structures. Lecture Notes in Math., vol.[2] Characterization of the Kantor-Koecher-Tits algebra by a generalized Ahlfors operator. J. Lie Theory, vol. 11, n. 2, 2001, 415-426. | MR 1851798 | Zbl 1049.53037
- ,[3] Rings and quasiconformal mappings in space. Trans. Amer. Math. Soc., vol. 103, 1962, 353-393. | MR 139735 | Zbl 0113.05805
,[4] On the automorphism group of the generalized conformal structure of a symmetric -space. Differential Geom. Appl., vol. 8, n. 1, 1998, 21-33. | MR 1601542 | Zbl 0914.53029
- ,[5] Generalized conformal structures on manifolds. Selected translations. Selecta Math. Soviet., vol. 6, n. 4, 1987, 307-340. | MR 925263 | Zbl 0632.53038
,[6] Quasiconformal mappings on the Heisenberg group. Invent. Math., vol. 80, n. 2, 1985, 309-338. | MR 788413 | Zbl 0567.30017
- ,[7] On differentiable mappings. In: et al. (eds.), Analytic functions. Princeton Math. Series, 24, Princeton Univ. Press, Princeton, N.J. 1960, 3-9. | MR 116280 | Zbl 0100.35701
,[8] Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un. Ann. of Math. (2), vol. 129, n. 1, 1989, 1-60. | MR 979599 | Zbl 0678.53042
,[9] On differential systems, graded Lie algebras and pseudo-groups. J. Math. Kyoto Univ., vol. 10, 1970, 1-82. | MR 266258 | Zbl 0206.50503
,[10] Differential systems associated with simple graded Lie algebras. In: Progress in differential geometry. Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo1993, 413-494. | MR 1274961 | Zbl 0812.17018
,