Hua-harmonic functions on symmetric type two Siegel domains
Buraczewski, Dariusz ; Damek, Ewa
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 199-207 / Harvested from Biblioteca Digitale Italiana di Matematica

We study a natural system of second order differential operators on a symmetric Siegel domain D that is invariant under the action of biholomorphic transformations. If D is of type two, the space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof and give a survey of previous results.

Publié le : 2002-12-01
@article{RLIN_2002_9_13_3-4_199_0,
     author = {Dariusz Buraczewski and Ewa Damek},
     title = {Hua-harmonic functions on symmetric type two Siegel domains},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {199-207},
     zbl = {1225.32004},
     mrnumber = {1984100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_199_0}
}
Buraczewski, Dariusz; Damek, Ewa. Hua-harmonic functions on symmetric type two Siegel domains. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 199-207. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_199_0/

[1] Berline, N. - Vergne, M., Equations de Hua et noyau de Poisson. Lecture Notes in Mathematics, vol. 880, Springer-Verlag, 1981, 1-51. | MR 644825 | Zbl 0521.32024

[2] Bonami, A. - Buraczewski, D. - Damek, E. - Hulanicki, A. - Penney, R. - Trojan, B., Hua system and pluriharmonicity for symmetric irreducible Siegel domains of type II. Journal of Functional Analysis, 188, n. 1, 2002, 38-74. | MR 1878631 | Zbl 0999.31005

[3] Buraczewski, D., Pluriharmonicity of Hua harmonic functions on symmetric irreducible Siegel domains of type II. Preprint.

[4] Buraczewski, D. - Damek, E. - Hulanicki, A., Bounded plurihramonic functions on symmetric irreducible Siegel domains. Mathematische Zeitschrift, to appear. | MR 1906712 | Zbl 1008.32013

[5] Damek, E. - Hulanicki, A., Pluriharmonic functions on symmetric irreducible Siegel domains. Studia Math., 139, n. 2, 2000, 104-140. | MR 1762449 | Zbl 0999.32012

[6] Damek, E. - Hulanicki, A. - Müller, D. - Peloso, M., Pluriharmonic H2 functions on symmetric irreducible Siegel domains. Geom. and Funct. Analysis, 10, 2000, 1090-1117. | MR 1792830 | Zbl 0969.31007

[7] Harish-Chandra, , Discrete series for semisimple Lie groups II. Acta Math., 116, 1960, 1-111. | Zbl 0199.20102

[8] Helgason, S., Geometric Analysis on Symmetric Spaces. Amer. Math. Soc., Providence1994. | MR 1280714 | Zbl 1157.43003

[9] Hua, L.K., Harmonic Analysis of Functions of Several Complex Variables in Classical Domains. Translations of Math. Monographs, vol. 6, Amer. Math. Soc., Providence1963. | MR 171936 | Zbl 0112.07402

[10] Johnson, K., Remarks on the theorem of Korányi and Malliavin on the Siegel upper half-plane of rank two. Proc. Amer. Math. Soc., 67, 1977, 351-356. | MR 476918 | Zbl 0395.22012

[11] Johnson, K., Differential equations and the Bergman-Shilov boundary on the Siegel upper half-plane. Arkiv for Matematik, 16, 1978, 95-108. | MR 499140 | Zbl 0395.22013

[12] Johnson, K.D. - Korányi, A., The Hua operators on bounded symmetric domains of tube type. Ann. of Math., (2) 111, n. 3, 1980, 589-608. | MR 577139 | Zbl 0468.32007

[13] Korányi, A. - Malliavin, P., Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two. Acta Math., 134, 1975, 185-209. | MR 410278 | Zbl 0318.60066

[14] Lassalle, M., Les équations de Hua d’un domaine borné symétrique du type tube. Invent. Math., 77, 1984, 129-161. | MR 751135 | Zbl 0582.32042

[15] Pjatecki-Shapiro, I.I., Geometry and classification of homogeneous bounded domains in C. Uspehi Math. Nauk, 2, 1965, 3-51; Russian Math. Surv., 20, 1966, 1-48. | Zbl 0142.05002