It has been known for a long time that the Szegö projection of tube domains over irreducible symmetric cones is unbounded in for . Indeed, this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental theorem proved by C. Fefferman in the 70’s. The same problem, related to the Bergman projection, deserves a different approach. In this survey, based on joint work of the author with D. Békollé, G. Garrigós, M. Peloso and F. Ricci, we give partial results on the range of for which it is bounded. We also show that there are two equivalent problems, of independent interest. One is a generalization of Hardy inequality for holomorphic functions. The other one is the characterization of the boundary values of functions in the Bergman spaces in terms of an adapted Littlewood-Paley theory. This last point of view leads naturally to extend the study to spaces with mixed norm as well.
@article{RLIN_2002_9_13_3-4_183_0, author = {Aline Bonami}, title = {Three related problems of Bergman spaces of tube domains over symmetric cones}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {183-197}, zbl = {1225.32012}, mrnumber = {1984099}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_183_0} }
Bonami, Aline. Three related problems of Bergman spaces of tube domains over symmetric cones. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 183-197. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_183_0/
[1] Estimates for the Bergman and Szegö projections in two symmetric domains of . Colloq. Math., 68, 1995, 81-100. | MR 1311766 | Zbl 0863.47018
- ,[2] Analysis on tube domains over light cones : some extensions of recent results. Actes des Rencontres d’Analyse Complexe: Mars 1999, Univ. Poitiers. Ed. Atlantique et ESA CNRS 6086, 2000. | Zbl 1039.32002
- ,[3] Littlewood-Paley decompositions related to symmetric cones. IMHOTEP, to appear; available at http://www.harmonic-analysis.org | MR 1905056 | Zbl 1014.32014
- - ,[4] Littlewood-Paley decompositions and Besov spaces related to symmetric cones. Univ. Orléans, preprint 2001; available at http://www.harmonic-analysis.org
- - - ,[5] Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z., 237, 2001, 31-59. | MR 1836772 | Zbl 0983.32001
- - - ,[6] Reproducing properties and -estimates for Bergman projections in Siegel domains of type II. Studia Math., 115 (3), 1995, 219-239. | MR 1351238 | Zbl 0842.32016
- ,[7] Representation theorems for holomorphic functions and harmonic functions in . Asterisque, 77, 1980, 11-66. | MR 604369 | Zbl 0472.46040
- ,[8] | MR 1446489 | Zbl 0841.43002
- , Analysis on symmetric cones. Clarendon Press, Oxford 1994.[9] The multiplier problem for the ball. Ann. of Math., 94, 1971, 330-336. | MR 296602 | Zbl 0234.42009
,[10] Generalized Hardy spaces on tube domains over cones. Colloq. Math., 90, 2001, 213-251. | MR 1876845 | Zbl 0999.42014
,[11] Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups. Actes, Congrès intern. math., 1, 1970, 173-189. | MR 578903 | Zbl 0252.43022
,