Three related problems of Bergman spaces of tube domains over symmetric cones
Bonami, Aline
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 183-197 / Harvested from Biblioteca Digitale Italiana di Matematica

It has been known for a long time that the Szegö projection of tube domains over irreducible symmetric cones is unbounded in Lp for p2. Indeed, this is a consequence of the fact that the characteristic function of a disc is not a Fourier multiplier, a fundamental theorem proved by C. Fefferman in the 70’s. The same problem, related to the Bergman projection, deserves a different approach. In this survey, based on joint work of the author with D. Békollé, G. Garrigós, M. Peloso and F. Ricci, we give partial results on the range of p for which it is bounded. We also show that there are two equivalent problems, of independent interest. One is a generalization of Hardy inequality for holomorphic functions. The other one is the characterization of the boundary values of functions in the Bergman spaces in terms of an adapted Littlewood-Paley theory. This last point of view leads naturally to extend the study to spaces with mixed norm as well.

Publié le : 2002-12-01
@article{RLIN_2002_9_13_3-4_183_0,
     author = {Aline Bonami},
     title = {Three related problems of Bergman spaces of tube domains over symmetric cones},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {183-197},
     zbl = {1225.32012},
     mrnumber = {1984099},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_3-4_183_0}
}
Bonami, Aline. Three related problems of Bergman spaces of tube domains over symmetric cones. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 183-197. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_3-4_183_0/

[1] Békollé, D. - Bonami, A., Estimates for the Bergman and Szegö projections in two symmetric domains of Cn. Colloq. Math., 68, 1995, 81-100. | MR 1311766 | Zbl 0863.47018

[2] Békollé, D. - Bonami, A., Analysis on tube domains over light cones : some extensions of recent results. Actes des Rencontres d’Analyse Complexe: Mars 1999, Univ. Poitiers. Ed. Atlantique et ESA CNRS 6086, 2000. | Zbl 1039.32002

[3] Békollé, D. - Bonami, A. - Garrigós, G., Littlewood-Paley decompositions related to symmetric cones. IMHOTEP, to appear; available at http://www.harmonic-analysis.org | MR 1905056 | Zbl 1014.32014

[4] Békollé, D. - Bonami, A. - Garrigós, G. - Ricci, F., Littlewood-Paley decompositions and Besov spaces related to symmetric cones. Univ. Orléans, preprint 2001; available at http://www.harmonic-analysis.org

[5] Békollé, D. - Bonami, A. - Peloso, M. - Ricci, F., Boundedness of weighted Bergman projections on tube domains over light cones. Math. Z., 237, 2001, 31-59. | MR 1836772 | Zbl 0983.32001

[6] Békollé, D. - Temgoua Kagou, A., Reproducing properties and Lp-estimates for Bergman projections in Siegel domains of type II. Studia Math., 115 (3), 1995, 219-239. | MR 1351238 | Zbl 0842.32016

[7] Coifman, R. - Rochberg, R., Representation theorems for holomorphic functions and harmonic functions in Lp. Asterisque, 77, 1980, 11-66. | MR 604369 | Zbl 0472.46040

[8] Faraut, J. - Korányi, A., Analysis on symmetric cones. Clarendon Press, Oxford 1994. | MR 1446489 | Zbl 0841.43002

[9] Fefferman, C., The multiplier problem for the ball. Ann. of Math., 94, 1971, 330-336. | MR 296602 | Zbl 0234.42009

[10] Garrigós, G., Generalized Hardy spaces on tube domains over cones. Colloq. Math., 90, 2001, 213-251. | MR 1876845 | Zbl 0999.42014

[11] Stein, E., Some problems in harmonic analysis suggested by symmetric spaces and semi-simple Lie groups. Actes, Congrès intern. math., 1, 1970, 173-189. | MR 578903 | Zbl 0252.43022