Optimal stability and instability results for a class of nearly integrable Hamiltonian systems
Berti, Massimiliano ; Biasco, Luca ; Bolle, Philippe
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 77-84 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider nearly integrable, non-isochronous, a-priori unstable Hamiltonian systems with a (trigonometric polynomial) Oµ-perturbation which does not preserve the unperturbed tori. We prove the existence of Arnold diffusion with diffusion time Td=O1/μlog1/μ by a variational method which does not require the existence of «transition chains of tori» provided by KAM theory. We also prove that our estimate of the diffusion time Td is optimal as a consequence of a general stability result proved via classical perturbation theory.

In questa Nota consideriamo sistemi Hamiltoniani quasi-integrabili, non-isocroni, a-priori instabili soggetti ad una perturbazione di ordine μ (un polinomio trigonometrico) che non preserva i tori imperturbati. Facendo uso di tecniche variazionali che NON richiedono l’esistenza di «catene di tori KAM di transizione», dimostriamo l’esistenza di orbite di diffusione con un tempo di diffusione Td=O1/μlog1/μ. Proviamo inoltre che la nostra stima sul tempo di diffusione è ottimale, a seguito di un risultato generale di stabilità per le variabili di azione dimostrato mediante la teoria classica delle perturbazioni.

Publié le : 2002-06-01
@article{RLIN_2002_9_13_2_77_0,
     author = {Massimiliano Berti and Luca Biasco and Philippe Bolle},
     title = {Optimal stability and instability results for a class of nearly integrable Hamiltonian systems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {77-84},
     zbl = {1072.37060},
     mrnumber = {1949480},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_2_77_0}
}
Berti, Massimiliano; Biasco, Luca; Bolle, Philippe. Optimal stability and instability results for a class of nearly integrable Hamiltonian systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 77-84. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_2_77_0/

[1] Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré - Analyse Non Lineaire, v. 15, n. 2, 1998, 233-252. | MR 1614571 | Zbl 1004.37043

[2] Arnold, V.I., Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl., 6, 1964, 581-585. | Zbl 0135.42602

[3] Berti, M. - Bolle, P., Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Rend. Mat. Acc. Lincei, s. 9, v. 11, 2000, 235-243. | MR 1837581 | Zbl 1009.37044

[4] Berti, M. - Bolle, P., A functional analysis approach to Arnold’s diffusion. Ann. Inst. Henri Poincaré, Analyse Non Lineaire, to appear. | Zbl 1087.37048

[5] Berti, M. - Bolle, P., Fast Arnold’s diffusion in systems with three time scales. Discrete and Continuous Dynamical Systems, series A, v. 8, n. 3, july 2002, 795-811. | MR 1897882 | Zbl 1023.37033

[6] Berti, M. - Biasco, L. - Bolle, P., Drift in phase space: a new variational mechanism with optimal diffusion time. SISSA 2002, preprint. | MR 1996776 | Zbl 1025.37037

[7] Bessi, U., An approach to Arnold diffusion through the calculus of variations. Nonlinear Analysis T. M. A., 26, 1996, 1115-1135. | MR 1375654 | Zbl 0867.70013

[8] Bessi, U. - Chierchia, L. - Valdinoci, E., Upper Bounds on Arnold Diffusion Time via Mather theory. J. Math. Pures Appl., v. 80, 1, 2001, 105-129. | MR 1810511 | Zbl 0986.37052

[9] Biasco, L. - Chierchia, L., On the stability of some properly-degenerate Hamiltonian systems. Discrete and Continuous Dynamical Systems, series A, to appear. | MR 1952372 | Zbl 1032.37039

[10] Bourgain, J. - Golse, F. - Wennberg, B., On the distribution of free path lengths for periodic Lorentz gas. Comm. Math. Phys., v. 190, 1998, 491-508. | MR 1600299 | Zbl 0910.60082

[11] Chierchia, L. - Gallavotti, G., Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, section Physique Théorique, 60, 1994, 1-144; see also Erratum in v. 68, 1998, 135. | MR 1259103 | Zbl 1010.37039

[12] Cresson, J., The transfer lemma for Graff tori and Arnold diffusion time. Discrete and Continuous Dynamical Systems, v. 7, n. 4, 2001, 787-800. | MR 1849660 | Zbl 1018.37040

[13] Cresson, J. - Guillet, C., Periodic orbits and Arnold diffusion. Discrete and Continuous Dynamical Systems, to appear. | MR 1952386 | Zbl 1031.37054

[14] Marco, J.P., Transitions le long des chaȋnes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. Henri Poincaré, v. 64, 1995, 205-252. | MR 1386217 | Zbl 0854.70011

[15] Nekhoroshev, N.N., An exponential estimate of the time of stability of nearly-integrable Hamiltonian systems. Russian Mathematical Survey, 32, 1977. | MR 501140 | Zbl 0389.70028

[16] Pöschel, J., Nekhoroshev estimates for quasi-convex Hamiltonian Systems. Math. Zeitschrift, 213, 1993, 187-216. | MR 1221713 | Zbl 0857.70009