A mathematical model for a problem of blood perfusion in a living tissue through a system of parallel capillaries is studied. Oxygen is assumed to be transported in two forms: freely diffusing and bounded (to erytrocytes in blood, to myoglobin in tissue). Existence of a weak solution is proved and a homogensation procedure is carried out in the case of randomly distribuited capillaries.
Uno studio di omogeneizzazione. Si studia un modello matematico per un problema di perfusione sanguigna in un tessuto vivente da parte di un sistema di capillari paralleli. Si suppone che l’ossigeno sia trasportato in due forme: libero di diffondere e legato (agli eritrociti nel sangue, alla mioglobina nel tessuto). Si dimostra l’esistenza di una soluzione debole e si utilizza un procedimento di omogeneizzazione per il caso di capillari distribuiti aleatoriamente.
@article{RLIN_2002_9_13_2_149_0, author = {Andro Mikeli\'c and Mario Primicerio}, title = {Oxygen exchange between multiple capillaries and living tissues: An homogenisation study}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {149-164}, zbl = {1180.92020}, mrnumber = {1949488}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_2_149_0} }
Mikelić, Andro; Primicerio, Mario. Oxygen exchange between multiple capillaries and living tissues: An homogenisation study. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 149-164. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_2_149_0/
[1] Quasilinear elliptic-parabolic equations. Math. Z., 183, 1983, 311-341. | MR 706391 | Zbl 0497.35049
- ,[2] Mathematical model of erytrocytes as point-likeT sources. Math. Biosci., 125, 1995, 165-189. | Zbl 0819.92006
- - ,[3] Entropy Solutions for Nonlinear Degenerate Problems. Arch. Rational Mech. Anal., 147, 1999, 263-361. | MR 1709116 | Zbl 0935.35056
,[4] Calculation of intracapillary oxygen tension distribution in muscle. Math. Biosci., 167, 2000, 123-143. | Zbl 1009.92012
- - - ,[5] Mathematical modelling of the microcirculation. Math. Biosci., 38, 1978, 155-202. | MR 475965 | Zbl 0381.92003
,[6] Porous media with partially soluble permeable grains. Nonlinear differ. equ. appl. (NoDEA), 7, 2000, 141-156. | Zbl 0949.35077
- ,[7] | MR 1329546 | Zbl 0801.35001
- - , Homogenization of Differential Operators and Integral Functionals. Springer-Verlag, Berlin 1994.[8] The number and distribution of capillaries in muscles with calculations of the oxygen pressure head necessary for supplying the tissue. J. Physiol. (London), 52, 1919, 409-415.
,[9] 8, Springer-Verlag, 1998. | MR 1673204 | Zbl pre05242554
- , Mathematical Physiology. Interdisciplinar Appl. Math.,[10] Linear and Quasilinear Equations of Parabolic Type. Transl. Am. Math. Soc., 23, 1968. | MR 241822 | Zbl 0174.15403
- - ,[11] Homogenization of Heat Equation for Domain with a Network of Pipes with a Well-Mixed Fluid. Ann. Mat. Pura Appl., (IV), vol. CLXVI, 1994, 227-251. | Zbl 0814.35007
- ,[12] Stability analysis of a coupled diffusion-transport system for oxygen transport in blood and tissue. Nonl. Anal. Th. Met. App., 9, 1985, 1037-1059. | MR 806908 | Zbl 0588.35017
,[13] Theory of oxygen transport to tissue. Crit. Riv. Biomed. Engrs., 17, 1989, 257-321.
,[14] Mathematical modelling of oxygen transport near a tissue surface: effect of the surface . Math. Biosci., 55, 1981, 231-246. | Zbl 0457.92009
,[15] Analysis of capillary-tissue diffusion multicapillary system. Math. Biosci., 35, 1978, 187-211. | Zbl 0402.92011
,[16] An asymptotic study of oxygen transport from multiple capillaries to skeletral muscle tissue. SIAM J. Appl. Math., 60, 2000, 1767-1788. | MR 1761770 | Zbl 0990.92009
- ,