We prove the following unique continuation property. Let be a solution of a second order linear parabolic equation and a segment parallel to the -axis. If has a zero of order faster than any non constant and time independent polynomial at each point of then vanishes in each point, , such that the plane has a non empty intersection with .
Dimostriamo la seguente propriet`a di continuazione unica. Sia una soluzione di un’equazione parabolica lineare del secondo ordine e un segmento parallelo all’asse . Se ha uno zero di ordine maggiore di qualsiasi polinomio non costante e indipendente dal tempo allora si annulla in ogni punto, , tale che il piano intersechi .
@article{RLIN_2002_9_13_2_107_0, author = {Sergio Vessella}, title = {Three cylinder inequalities and unique continuation properties for parabolic equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {107-120}, zbl = {1221.35181}, mrnumber = {1949484}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_2_107_0} }
Vessella, Sergio. Three cylinder inequalities and unique continuation properties for parabolic equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 107-120. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_2_107_0/
[1] domains and unique continuation at the boundary. Comm. Pure Appl. Math., L, 1997, 935-969. | MR 1466583 | Zbl 0899.31004
- ,[2] A unique continuation theorem for exterior differential forms on Riemannian manifold. Ark. for Matematik, 4, (34), 1962, 417-453. | MR 140031 | Zbl 0107.07803
- - ,[3] Quantitative estimates of unique continuation for parabolic equations and inverse-initial boundary value problems with unknown boundaries. Transactions of AMS, to appear. | MR 1862557 | Zbl 0992.35112
- - ,[4] A stability result in the localization of cavities in a thermic conducting medium. Preprint n. 59, 2001, Laboratoire de Mathématiques Appliquées, Université de Versailles. | MR 1925040 | Zbl 1225.35255
- - ,[5] An inequality for the parabolic operator. Sci. Sinica, 12, 1963, 1425-1467. | MR 173093
,[6] Some properties of solutions of a linear second order parabolic equation. Math. USSR-Sbornik, 3 (1), 1967, 41-67. | Zbl 0172.14601
,[7] Uniqueness theorem for second order elliptic differential equations. Comm. Part. Diff. Equations, 8 (1), 1983, 21-64. | Zbl 0815.35063
,[8] Unique continuation for parabolic equations. Duke Math. J., 28, 1961, 369-382. | MR 140840 | Zbl 0143.33301
- ,[9] A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math., XLIII, 1990, 127-136. | MR 1024191 | Zbl 0727.35063
,[10] Three-Cylinder theorem for certain class of semilinear parabolic equations. Mat. Zametki, 51, (1), 1992, 32-41. | MR 1165278 | Zbl 0780.35050
,[11] Carleman estimates, optimal three cylinder inequality and unique continuation properties for solutions to parabolic equations. Quaderno DiMaD, novembre 2001, 1-12. | Zbl 1024.35021
,