Three cylinder inequalities and unique continuation properties for parabolic equations
Vessella, Sergio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 107-120 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove the following unique continuation property. Let u be a solution of a second order linear parabolic equation and S a segment parallel to the t-axis. If u has a zero of order faster than any non constant and time independent polynomial at each point of S then u vanishes in each point, x,t, such that the plane t=t has a non empty intersection with S.

Dimostriamo la seguente propriet`a di continuazione unica. Sia u una soluzione di un’equazione parabolica lineare del secondo ordine e S un segmento parallelo all’asse t. Se u ha uno zero di ordine maggiore di qualsiasi polinomio non costante e indipendente dal tempo allora u si annulla in ogni punto, x,t, tale che il piano t=t intersechi S.

Publié le : 2002-06-01
@article{RLIN_2002_9_13_2_107_0,
     author = {Sergio Vessella},
     title = {Three cylinder inequalities and unique continuation properties for parabolic equations},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {107-120},
     zbl = {1221.35181},
     mrnumber = {1949484},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_2_107_0}
}
Vessella, Sergio. Three cylinder inequalities and unique continuation properties for parabolic equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 107-120. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_2_107_0/

[1] Adolfsson, V. - Escauriaza, L., C1,α domains and unique continuation at the boundary. Comm. Pure Appl. Math., L, 1997, 935-969. | MR 1466583 | Zbl 0899.31004

[2] Aronszajn, N. - Krzywicki, A. - Szarski, J., A unique continuation theorem for exterior differential forms on Riemannian manifold. Ark. for Matematik, 4, (34), 1962, 417-453. | MR 140031 | Zbl 0107.07803

[3] Canuto, B. - Rosset, E. - Vessella, S., Quantitative estimates of unique continuation for parabolic equations and inverse-initial boundary value problems with unknown boundaries. Transactions of AMS, to appear. | MR 1862557 | Zbl 0992.35112

[4] Canuto, B. - Rosset, E. - Vessella, S., A stability result in the localization of cavities in a thermic conducting medium. Preprint n. 59, 2001, Laboratoire de Mathématiques Appliquées, Université de Versailles. | MR 1925040 | Zbl 1225.35255

[5] Li, Dè-Yuan', An inequality for the parabolic operator. Sci. Sinica, 12, 1963, 1425-1467. | MR 173093

[6] Glagoleva, R.Ja., Some properties of solutions of a linear second order parabolic equation. Math. USSR-Sbornik, 3 (1), 1967, 41-67. | Zbl 0172.14601

[7] Hörmander, L., Uniqueness theorem for second order elliptic differential equations. Comm. Part. Diff. Equations, 8 (1), 1983, 21-64. | Zbl 0815.35063

[8] Lees, M. - Protter, M.H., Unique continuation for parabolic equations. Duke Math. J., 28, 1961, 369-382. | MR 140840 | Zbl 0143.33301

[9] Lin, F.H., A uniqueness theorem for parabolic equations. Comm. Pure Appl. Math., XLIII, 1990, 127-136. | MR 1024191 | Zbl 0727.35063

[10] Varin, A.A., Three-Cylinder theorem for certain class of semilinear parabolic equations. Mat. Zametki, 51, (1), 1992, 32-41. | MR 1165278 | Zbl 0780.35050

[11] Vessella, S., Carleman estimates, optimal three cylinder inequality and unique continuation properties for solutions to parabolic equations. Quaderno DiMaD, novembre 2001, 1-12. | Zbl 1024.35021