The constitutive model assumed in this Note is poroplastic two-phase (solid-fluid) with full saturation and stable in Drucker’s sense. A solid or structure of this material is considered, subjected to dynamic external actions, in particular periodic or intermittent, in a small deformation regime. A sufficient condition and a necessary one are established, by a «static» approach, for shakedown (or adaptation), namely for boundedness in time of the cumulative dissipated energy.
Il modello costitutivo assunto in questa Nota è poroplastico bifase (solido-fluido) a saturazione totale e stabile nel senso di Drucker. Un solido o struttura di questo materiale è considerato soggetto ad azioni esterne dinamiche, in particolare periodiche o intermittenti, in regime di piccole deformazioni. Si dimostrano, in base ad un approccio «statico», una condizione sufficiente e una necessaria per l’adattamento (o «shakedown»), inteso come caratterizzato da limitatezza nel tempo dell’energia dissipata cumulativa.
@article{RLIN_2002_9_13_1_43_0, author = {Giuseppe Cocchetti and Giulio Maier}, title = {Shakedown theorems in poroplastic dynamics}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {43-53}, zbl = {1221.74023}, mrnumber = {1949147}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_1_43_0} }
Cocchetti, Giuseppe; Maier, Giulio. Shakedown theorems in poroplastic dynamics. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 43-53. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_1_43_0/
[1] Sull'adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche. Giornale del Genio Civile, 415, 1969, 239-258.
,[2] Static shakedown theorems in piecewise linearized poroplasticity. Arch. Appl. Mech., 68, 1998, 651-661. | Zbl 0939.74057
- ,[3] Shakedown analysis in poroplasticity by linear programming. Int. J. Num. Meth. Engng, 47(1-3), 2000, 141-168. | MR 1744290 | Zbl 0987.74064
- ,[4] Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws. Int. J. Sol. Struct., 32, 1995, 3145-3166. | MR 1349947 | Zbl 0879.73019
- - ,[5] Inadaptation theorems in the dynamics of elastic, work-hardening structures. Ingenieur-Archiv, 43, 1973, 44-57. | MR 413698 | Zbl 0271.73030
- ,[6] | Zbl 0838.73001
, Mechanics of porous continua. John Wiley & Sons, Chichester1995.[7] Sur la théorie et le calcul à l’adaptation des structures élastoplastiques. J. Mécanique, 15, 1976, 1-53. | MR 416192 | Zbl 0344.73040
- ,[8] Poroplastic analysis of concrete dams and their foundations. Dam Engineering, 2(3), 1992, 165-192.
- - - ,[9] Sul rientro in fase elastica delle vibrazioni forzate elasto-plastiche. Giornale del Genio Civile, 1969, 251-261.
,[10] | MR 1400889 | Zbl 0859.73002
, Limit analysis of solids and structures. CRC Press, New York1996.[11] General theorems for elastic-plastic solids. In: - (eds.)., Progress in Solid Mechanics. North-Holland, Amsterdam 1960, 167-221. | MR 112405 | Zbl 0098.37603
,[12]
, Shakedown of elastic-plastic structures. Elsevier, Amsterdam1987.[13] | Zbl 0935.74004
- , The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley & Sons, Chichester 1998.[14] Variational finite element modelling in poroplasticity. In: (ed.), Recent Developments in Computational and Applied Mechanics. CIMNE, Barcelona 1997, 180-199. | Zbl 1071.74704
- ,[15] Dynamic shakedown and bounding theory for a class of nonlinear hardening discrete structural models. Int. J. Plasticity, 6, 1990, 551-572. | Zbl 0731.73022
- ,[16] On direct methods for shakedown and limit analysis. European Journal of Mechanics A/Solids, Special Issue, 19, 2000, S79-S100.
- - ,[17] Dynamic shakedown by modal analysis. Meccanica, 19, 1984, 133-144. | MR 767044 | Zbl 0546.73028
,[18] On shakedown of structures under dynamic agencies. In: - (eds.), Inelastic Analysis Under Variable Loads. Cogras, Palermo 1984, 5-29.
,[19]
- , Inelastic analysis of structures under variable repeated loads. Kluwer Academic Publishers, Dordrecht 2000.