Shakedown theorems in poroplastic dynamics
Cocchetti, Giuseppe ; Maier, Giulio
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002), p. 43-53 / Harvested from Biblioteca Digitale Italiana di Matematica

The constitutive model assumed in this Note is poroplastic two-phase (solid-fluid) with full saturation and stable in Drucker’s sense. A solid or structure of this material is considered, subjected to dynamic external actions, in particular periodic or intermittent, in a small deformation regime. A sufficient condition and a necessary one are established, by a «static» approach, for shakedown (or adaptation), namely for boundedness in time of the cumulative dissipated energy.

Il modello costitutivo assunto in questa Nota è poroplastico bifase (solido-fluido) a saturazione totale e stabile nel senso di Drucker. Un solido o struttura di questo materiale è considerato soggetto ad azioni esterne dinamiche, in particolare periodiche o intermittenti, in regime di piccole deformazioni. Si dimostrano, in base ad un approccio «statico», una condizione sufficiente e una necessaria per l’adattamento (o «shakedown»), inteso come caratterizzato da limitatezza nel tempo dell’energia dissipata cumulativa.

Publié le : 2002-03-01
@article{RLIN_2002_9_13_1_43_0,
     author = {Giuseppe Cocchetti and Giulio Maier},
     title = {Shakedown theorems in poroplastic dynamics},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {13},
     year = {2002},
     pages = {43-53},
     zbl = {1221.74023},
     mrnumber = {1949147},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_1_43_0}
}
Cocchetti, Giuseppe; Maier, Giulio. Shakedown theorems in poroplastic dynamics. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 43-53. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_1_43_0/

[1] Ceradini, G., Sull'adattamento dei corpi elasto-plastici soggetti ad azioni dinamiche. Giornale del Genio Civile, 415, 1969, 239-258.

[2] Cocchetti, G. - Maier, G., Static shakedown theorems in piecewise linearized poroplasticity. Arch. Appl. Mech., 68, 1998, 651-661. | Zbl 0939.74057

[3] Cocchetti, G. - Maier, G., Shakedown analysis in poroplasticity by linear programming. Int. J. Num. Meth. Engng, 47(1-3), 2000, 141-168. | MR 1744290 | Zbl 0987.74064

[4] Corigliano, A. - Maier, G. - Pycko, S., Dynamic shakedown analysis and bounds for elastoplastic structures with nonassociative, internal variable constitutive laws. Int. J. Sol. Struct., 32, 1995, 3145-3166. | MR 1349947 | Zbl 0879.73019

[5] Corradi, L. - Maier, G., Inadaptation theorems in the dynamics of elastic, work-hardening structures. Ingenieur-Archiv, 43, 1973, 44-57. | MR 413698 | Zbl 0271.73030

[6] Coussy, O., Mechanics of porous continua. John Wiley & Sons, Chichester1995. | Zbl 0838.73001

[7] Débordes, O. - Nayroles, B., Sur la théorie et le calcul à l’adaptation des structures élastoplastiques. J. Mécanique, 15, 1976, 1-53. | MR 416192 | Zbl 0344.73040

[8] Fauchet, B. - Coussy, O. - Carrère, A. - Tardieu, B., Poroplastic analysis of concrete dams and their foundations. Dam Engineering, 2(3), 1992, 165-192.

[9] Gavarini, C., Sul rientro in fase elastica delle vibrazioni forzate elasto-plastiche. Giornale del Genio Civile, 1969, 251-261.

[10] Kamenjarzh, J. A., Limit analysis of solids and structures. CRC Press, New York1996. | MR 1400889 | Zbl 0859.73002

[11] Koiter, W.T., General theorems for elastic-plastic solids. In: I.N. Sneddon - R. Hill (eds.)., Progress in Solid Mechanics. North-Holland, Amsterdam 1960, 167-221. | MR 112405 | Zbl 0098.37603

[12] König, J.A., Shakedown of elastic-plastic structures. Elsevier, Amsterdam1987.

[13] Lewis, R.W. - Schrefler, B.A., The finite element method in the static and dynamic deformation and consolidation of porous media. John Wiley & Sons, Chichester 1998. | Zbl 0935.74004

[14] Maier, G. - Comi, C., Variational finite element modelling in poroplasticity. In: B.D. Reddy (ed.), Recent Developments in Computational and Applied Mechanics. CIMNE, Barcelona 1997, 180-199. | Zbl 1071.74704

[15] Maier, G. - Novati, G., Dynamic shakedown and bounding theory for a class of nonlinear hardening discrete structural models. Int. J. Plasticity, 6, 1990, 551-572. | Zbl 0731.73022

[16] Maier, G. - Carvelli, V. - Cocchetti, G., On direct methods for shakedown and limit analysis. European Journal of Mechanics A/Solids, Special Issue, 19, 2000, S79-S100.

[17] Polizzotto, C., Dynamic shakedown by modal analysis. Meccanica, 19, 1984, 133-144. | MR 767044 | Zbl 0546.73028

[18] Polizzotto, C., On shakedown of structures under dynamic agencies. In: A. Sawczuk - C. Polizzotto (eds.), Inelastic Analysis Under Variable Loads. Cogras, Palermo 1984, 5-29.

[19] D. Weichert - G. Maier (Eds.), Inelastic analysis of structures under variable repeated loads. Kluwer Academic Publishers, Dordrecht 2000.