A-priori estimates in weighted Hölder norms are obtained for the solutions of a one- dimensional boundary value problem for the heat equation in a domain degenerating at time t = 0 and with boundary data involving simultaneously the first order time derivative and the spatial gradient.
Si ottengono stime a priori in opportune norme di H¨older con peso per le soluzioni di un problema unidimensionale per l’equazione del calore in un dominio mobile che degenera per t = 0 e con una condizione al contorno in cui compaiono simultaneamente le due derivate prime della funzione incognita.
@article{RLIN_2002_9_13_1_23_0, author = {Antonio Fasano and Vsevolod Solonnikov}, title = {Estimates of weighted H\"older norms of the solutions to a parabolic boundary value problem in an initially degenerate domain}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {13}, year = {2002}, pages = {23-41}, zbl = {1221.35185}, mrnumber = {1949146}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2002_9_13_1_23_0} }
Fasano, Antonio; Solonnikov, Vsevolod. Estimates of weighted Hölder norms of the solutions to a parabolic boundary value problem in an initially degenerate domain. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 13 (2002) pp. 23-41. http://gdmltest.u-ga.fr/item/RLIN_2002_9_13_1_23_0/
[1] A filtration problem in a composite porous material with two free boundaries. Advances in Math. Sc. and Appl., 11, 2001. | MR 1907459 | Zbl 1006.76094
- - ,[2] A one-dimensional flow problem in porous media with hydrophile granules. Math. Meth. Appl. Sci., 22, 1999, 605-617. | MR 1682914 | Zbl 0921.76167
,[3] Some two-scale processes involving parabolic equations. In: - - (eds.), Free Boundary Problems, Theory and Applications. CRC Press, 1999, 39-50. | MR 1702134 | Zbl 0935.35180
,[4] Porous media with hydrophile granules. In: (ed.), Complex Flows in Industrial Processes. MSSET Birkhäuser, Chapt. 10, 2000, 307-332. | MR 1738017 | Zbl 0943.76080
,[5] On one-dimensional unsaturated flow in a porous medium with hydrophile grains. Functional Differential Equations, 8, 2001, 195-224. | MR 1949999 | Zbl 1062.76051
- ,[6] 23, American Mathematical Society, 1988. | Zbl 0164.12302
- - , Linear and Quasilinear Equations of Parabolic Type. Trans. Math. Monographs, vol.