Some results on critical groups for a class of functionals defined on Sobolev Banach spaces
Cingolani, Silvia ; Vannella, Giuseppina
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001), p. 199-203 / Harvested from Biblioteca Digitale Italiana di Matematica

We present critical groups estimates for a functional f defined on the Banach space W01,pΩ, Ω bounded domain in RN, 2<p<, associated to a quasilinear elliptic equation involving p-laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of f in each critical point, we compute the critical groups of f in each isolated critical point via Morse index.

Presentiamo stime di gruppi critici per un funzionale f definito sullo spazio di Banach W01,pΩ, Ω dominio limitato in RN, 2<p<, associato a una equazione ellittica che coinvolge il p-laplaciano. Nonostante la mancanza di una struttura di Hilbert e di proprietà di Fredholm del differenziale secondo di f nei punti critici, valutiamo i gruppi critici di f in ogni punto critico isolato mediante l’indice di Morse.

Publié le : 2001-12-01
@article{RLIN_2001_9_12_4_199_0,
     author = {Silvia Cingolani and Giuseppina Vannella},
     title = {Some results on critical groups for a class of functionals defined on Sobolev Banach spaces},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {12},
     year = {2001},
     pages = {199-203},
     zbl = {1072.58005},
     mrnumber = {1898461},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_4_199_0}
}
Cingolani, Silvia; Vannella, Giuseppina. Some results on critical groups for a class of functionals defined on Sobolev Banach spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 199-203. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_4_199_0/

[1] Benci, V. - D'Avenia, P. - Fortunato, D. - Pisani, L., Solitons in several space dimensions: a Derrick's problem and infinitely many solutions. Arch. Rational Mech. Anal., 154, 2000, 297-324. | MR 1785469 | Zbl 0973.35161

[2] Chang, K., Morse Theory on Banach space and its applications to partial differential equations. Chin. Ann. of Math., 4B, 1983, 381-399. | MR 742038 | Zbl 0534.58020

[3] Chang, K., Morse theory in nonlinear analysis. In: A. Ambrosetti - K.C. Chang - I. Ekeland (eds.), Nonlinear Functional Analysis and Applications to Differential Equations. World Scientific, Singapore 1998. | MR 1703528 | Zbl 0960.58006

[4] Cingolani, S. - Vannella, G., Critical groups computations on a class of Sobolev Banach spaces via Morse index. To appear. | MR 1961517 | Zbl 1023.58004

[5] Corvellec, J.N. - Degiovanni, M., Nontrivial solutions of quasilinear equations via nonsmooth Morse theory. J. Diff. Eqs., 136, 1997, 268-293. | MR 1448826 | Zbl 1139.35335

[6] Lancelotti, S., Morse index estimates for continuous functionals associated with quasilinear elliptic equations. Dip. Mat. Politecnico Torino 14/1999. | Zbl 1035.58010

[7] Tolksdorf, P., Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eqs., 51, 1984, 126-150. | MR 727034 | Zbl 0488.35017

[8] Tolksdorf, P., On the Dirichlet problem for a quasilinear equations in domains with conical boundary points. Comm. Part. Diff. Eqs., 8, 1983, 773-817. | MR 700735 | Zbl 0515.35024

[9] Tromba, A.J., A general approach to Morse theory. J. Diff. Geometry, 12, 1977, 47-85. | MR 464304 | Zbl 0344.58012

[10] Uhlenbeck, K., Morse theory on Banach manifolds. J. Funct. Anal., 10, 1972, 430-445. | MR 377979 | Zbl 0241.58002