We present critical groups estimates for a functional defined on the Banach space , bounded domain in , , associated to a quasilinear elliptic equation involving -laplacian. In spite of the lack of an Hilbert structure and of Fredholm property of the second order differential of in each critical point, we compute the critical groups of in each isolated critical point via Morse index.
Presentiamo stime di gruppi critici per un funzionale definito sullo spazio di Banach , dominio limitato in , , associato a una equazione ellittica che coinvolge il -laplaciano. Nonostante la mancanza di una struttura di Hilbert e di proprietà di Fredholm del differenziale secondo di nei punti critici, valutiamo i gruppi critici di in ogni punto critico isolato mediante l’indice di Morse.
@article{RLIN_2001_9_12_4_199_0, author = {Silvia Cingolani and Giuseppina Vannella}, title = {Some results on critical groups for a class of functionals defined on Sobolev Banach spaces}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {12}, year = {2001}, pages = {199-203}, zbl = {1072.58005}, mrnumber = {1898461}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_4_199_0} }
Cingolani, Silvia; Vannella, Giuseppina. Some results on critical groups for a class of functionals defined on Sobolev Banach spaces. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 199-203. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_4_199_0/
[1] Solitons in several space dimensions: a Derrick's problem and infinitely many solutions. Arch. Rational Mech. Anal., 154, 2000, 297-324. | MR 1785469 | Zbl 0973.35161
- - - ,[2] Morse Theory on Banach space and its applications to partial differential equations. Chin. Ann. of Math., 4B, 1983, 381-399. | MR 742038 | Zbl 0534.58020
,[3] Morse theory in nonlinear analysis. In: - - (eds.), Nonlinear Functional Analysis and Applications to Differential Equations. World Scientific, Singapore 1998. | MR 1703528 | Zbl 0960.58006
,[4] Critical groups computations on a class of Sobolev Banach spaces via Morse index. To appear. | MR 1961517 | Zbl 1023.58004
- ,[5] Nontrivial solutions of quasilinear equations via nonsmooth Morse theory. J. Diff. Eqs., 136, 1997, 268-293. | MR 1448826 | Zbl 1139.35335
- ,[6] Morse index estimates for continuous functionals associated with quasilinear elliptic equations. Dip. Mat. Politecnico Torino 14/1999. | Zbl 1035.58010
,[7] Regularity for a more general class of quasilinear elliptic equations. J. Diff. Eqs., 51, 1984, 126-150. | MR 727034 | Zbl 0488.35017
,[8] On the Dirichlet problem for a quasilinear equations in domains with conical boundary points. Comm. Part. Diff. Eqs., 8, 1983, 773-817. | MR 700735 | Zbl 0515.35024
,[9] A general approach to Morse theory. J. Diff. Geometry, 12, 1977, 47-85. | MR 464304 | Zbl 0344.58012
,[10] Morse theory on Banach manifolds. J. Funct. Anal., 10, 1972, 430-445. | MR 377979 | Zbl 0241.58002
,