Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem
Brezzi, Franco ; Hughes, Thomas J. R. ; Süli, Endre
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001), p. 159-166 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider the approximation of elliptic boundary value problems by conforming finite element methods. A model problem, the Poisson equation with Dirichlet boundary conditions, is used to examine the convergence behavior of flux defined on an internal boundary which splits the domain in two. A variational definition of flux, designed to satisfy local conservation laws, is shown to lead to improved rates of convergence.

Si affronta il problema di approssimare il flusso del gradiente della soluzione di un problema ai limiti per una equazione lineare ellittica del secondo ordine, prendendo come problema modello il problema di Dirichlet per l’operatore di Laplace in due dimensioni spaziali. La linea Γ lungo la quale si vuole approssimare il flusso è supposta essere rettilinea. L’approssimazione è costruita con elementi finiti continui e localmente polinomiali di grado k, con k intero 1. Tramite una opportuna definizione variazionale del flusso approsssimato, si ottengono stime dell’errore ottimali in spazi del tipo di H-k-12Γ.

Publié le : 2001-09-01
@article{RLIN_2001_9_12_3_159_0,
     author = {Franco Brezzi and Thomas J. R. Hughes and Endre S\"uli},
     title = {Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {12},
     year = {2001},
     pages = {159-166},
     zbl = {1221.65304},
     mrnumber = {1898457},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_3_159_0}
}
Brezzi, Franco; Hughes, Thomas J. R.; Süli, Endre. Variational approximation of flux in conforming finite element methods for elliptic partial differential equations : a model problem. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 159-166. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_3_159_0/

[1] Babuška, I. - Miller, A., The post processing approach in the finite element method, part 1: calculation of displacements, stresses and other higher derivatives of the displacements. Internat. J. Numer. Methods. Engrg., 34, 1984, 1085-1109. | Zbl 0535.73052

[2] Babuška, I. - Miller, A., The post processing approach in the finite element method, part 2: the calculation of stress intensity factors. Internat. J. Numer. Methods. Engrg., 34, 1984, 1111-1129. | Zbl 0535.73053

[3] Babuška, I. - Miller, A., The post processing approach in the finite element method, part 3: a posteriori estimates and adaptive mesh selection. Internat. J. Numer. Methods. Engrg., 34, 1984, 1131-1151. | Zbl 0555.73072

[4] Babuška, I. - Suri, M., The p and h-p versions of the finite element method, basic principles and properties. SIAM Review, 36(4), 1994, 578-632. | MR 1306924 | Zbl 0813.65118

[5] Barrett, J.W. - Elliott, C.M., Total flux estimates for a finite element approximation of elliptic equations. IMA J. Numer. Anal., 7, 1987, 129-148. | MR 968084 | Zbl 0619.65098

[6] Bramble, J.H. - Schatz, A.H., Higher order local accuracy by averaging in the finite element method. Mathematics of Computation, 31, 1977, 94-111. | MR 431744 | Zbl 0353.65064

[7] Ciarlet, Ph.G., The finite element methods for elliptic problems. North Holland, Amsterdam1978. | MR 1115235 | Zbl 0511.65078

[8] Cockburn, B. - Luskin, M. - Shu, C.-W. - Süli, E., Postprocessing of the discontinuous Galerkin finite element method. In: B. Cockburn - G. Karniadakis - C.-W. Shu (eds.), Discontinuous Galerkin Finite Element Methods. Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, 2000; extended version submitted to Mathematics of Computation, 2000. | MR 1842161

[9] Giles, M.B. - Larson, M.G. - Levenstam, M. - Süli, E., Adaptive error control for finite element approximations of the lift and drag in a viscous flow. Technical Report NA-97/06, Oxford University Computing Laboratory, Wolfson Building, Parks Road, Oxford OX1 3QD, 1997.

[10] Hughes, T.J.R. - Engel, G. - Mazzei, L. - Larson, M.G., The Continuous Galerkin Method is Locally Conservative. Journal of Computational Physics, 163, 2000, 467-488. | MR 1783558 | Zbl 0969.65104

[11] Lions, J.L. - Magenes, E., Problèmes aux limites non homogènes et applications. Vol. 1, Dunod, Paris 1968. | Zbl 0165.10801

[12] Marini, L.D. - Quarteroni, A., A relaxation procedure for domain decomposition methods using finite elements. Numer. Math., 55, 1989, 575-598. | MR 998911 | Zbl 0661.65111

[13] Wahlbin, L.B., Superconvergence in Galerkin Finite Element Methods. Lecture Notes in Mathematics, 1605, Springer-Verlag, 1977. | MR 1439050 | Zbl 0826.65092

[14] Wheeler, J.A., Simulation of heat transfer from a warm pipeline buried in permafrost. Proceedings of the 74th National meeting of the American Institute of Chemical Engineering, 1973.