We announce that a class of problems containing the classical periodically forced pendulum equation displays the main features of chaotic dynamics for a dense set of forcing terms in a space of periodic functions with zero mean value. The approach is based on global variational methods.
Si annuncia che una classe di problemi contenente l’equazione del pendolo forzato periodicamente presenta le principali caratteristiche della dinamica caotica per un insieme denso di termini forzanti nell’insieme delle funzioni periodiche a media nulla. I metodi sono di natura variazionale.
@article{RLIN_2001_9_12_2_107_0, author = {Elena Bosetto and Enrico Serra and Susanna Terracini}, title = {Density of chaotic dynamics in periodically forced pendulum-type equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {12}, year = {2001}, pages = {107-113}, zbl = {1072.37048}, mrnumber = {1898453}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_2_107_0} }
Bosetto, Elena; Serra, Enrico; Terracini, Susanna. Density of chaotic dynamics in periodically forced pendulum-type equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 107-113. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_2_107_0/
[1] 43, Birkhäuser, Boston 2001, 147-159. | MR 1800617 | Zbl 0994.34029
- - , Complex dynamics in a class of reversible equations. Progr. in Diff. Eqs. Appl.,[2] Genericity of the multibump dynamics for almost periodic Duffing-like systems. Proc. Royal Soc. Edinburgh, 129A, 1999, 885-901. | MR 1719214 | Zbl 0941.34032
- - ,[3] Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. IHP, Anal. non Linéaire, 15, 1998, 233-252. | MR 1614571 | Zbl 1004.37043
- ,[4] A variational approach to chaotic dynamics in periodically forced nonlinear oscillators. Ann. IHP, Anal. non Linéaire, 17, 2000, 673-709. | MR 1804651 | Zbl 0978.37024
- ,[5] Generic-type results for chaotic dynamics in equations with periodic forcing terms. Preprint 2000. | MR 1890600 | Zbl 1012.34040
- - ,[6] A global condition for quasi-random behavior in a class of conservative systems. Comm. Pure Appl. Math., 49, 1996, 285-305. | MR 1374173 | Zbl 0860.58027
- ,[7] Homoclinic solutions to periodic motions in a class of reversible equations. Calc. Var. and PDEs, 9, 1999, 157-184. | MR 1714117 | Zbl 0967.34041
- ,[8] Generic results for the existence of nondegenerate periodic solutions of some differential systems with periodic nonlinearities. J. Diff. Eq., 91, 1991, 138-148. | MR 1106121 | Zbl 0742.34043
- - - ,[9] Variational construction of orbits of twist diffeomorphisms. J. of AMS, 4, 1991, 207-263. | MR 1080112 | Zbl 0737.58029
,[10] Heteroclinics for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., 14, 1994, 817-829. | MR 1304144 | Zbl 0818.34025
,[11] Heteroclinics for a reversible Hamiltonian system, 2. Diff. and Int. Eq., 7, 1994, 1557-1572. | MR 1269671 | Zbl 0835.34050
,[12] Connecting orbits for a reversible Hamiltonian system. Ergod. Th. and Dyn. Sys., to appear. | MR 1804957 | Zbl 0981.37020
,[13] Looking for the Bernoulli shift. Ann. IHP, Anal. non Linéaire, 10, 1993, 561-590. | MR 1249107 | Zbl 0803.58013
,[14] On the structure of the solution set of forced pendulum-type equations. J. Diff. Eq., 131, 1996, 189-208. | MR 1419011 | Zbl 0864.34038
- - ,[15] Non degeneracy and chaotic motions for a class of almost-periodic Lagrangian systems. Nonlin. Anal. TMA, 37, 1999, 337-361. | MR 1694395 | Zbl 0948.37022
, , Introduction to applied nonlinear dynamical systems and chaos. Springer-Verlag, New York1990.