On a temperature-dependent Hele-Shaw flow in one dimension
Fasano, Antonio ; Pezza, Laura
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001), p. 57-67 / Harvested from Biblioteca Digitale Italiana di Matematica

A model is presented for a Hele-Shaw flow with variable temperature in one space dimension. The problem to be solved is a free boundary problem for a parabolic equation with a non-linear and non-local free boundary condition. Existence and uniqueness are proved.

Si presenta un modello per un flusso di Hele-Shaw con temperatura variabile in una dimensione spaziale. Il problema da risolvere è un problema a frontiera libera per un’equazione parabolica con una condizione al contorno non lineare e non locale. Si dimostrano esistenza e unicità.

Publié le : 2001-03-01
@article{RLIN_2001_9_12_1_57_0,
     author = {Antonio Fasano and Laura Pezza},
     title = {On a temperature-dependent Hele-Shaw flow in one dimension},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {12},
     year = {2001},
     pages = {57-67},
     zbl = {1170.76326},
     mrnumber = {1898449},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_1_57_0}
}
Fasano, Antonio; Pezza, Laura. On a temperature-dependent Hele-Shaw flow in one dimension. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 57-67. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_1_57_0/

[1] Alexander, A.N. - Entov, V.M., On the steady-state advancement of fingers and bubbles in a Hele-Shaw cell filled by a non-Newtonian fluid. EJAM, 8, 1997, 73-88. | MR 1431414 | Zbl 0883.76003

[2] Combescot, R. - Hakim, V. - Dombre, T. - Pomeau-Plumir, Y. - Shape, A., Selection for Saffman-Taylor fingers. Phys. Rev. Lett., 56, 1986, 2036-2039.

[3] Elliott, C.M. - Ockendon, J.R., Weak and variational methods for free and moving boundary problems. Res. Notes Math., 59, Pitman, London 1992. | Zbl 0476.35080

[4] Entov, V.M. - Etingof, P.J., Viscous flows with time dependent free boundaries in a non-planar Hele-Shaw cell. EJAM, 8, 1997, 23-36. | MR 1431411 | Zbl 0878.76023

[5] Friedman, A., Partial Differential Equations of Parabolic Type. Prentice Hall Inc., 1964. | MR 181836 | Zbl 0144.34903

[6] Galin, L.A., Unsteady filtration with a free surface. Dokl. Akad. Nauk. SSSR, 47, 1945, 246-249. | MR 14004 | Zbl 0061.46202

[7] Green, W.H. - Ampt, G.A., Studies on soil physics. The flow of air and water through soils. J. Agric. Sci., 4, 1911, 1-24.

[8] Hele-Shaw, H.S., The flow of water. Nature, vol. 58, n. 1489, 1898, 33-36. | JFM 29.0646.01

[9] Helfrich, K.R., Thermo-viscous fingering of flow in a thin gap: a model of magma flow in dikes and fissures. J. Fluid Mech., 305, 1995, 219-238. | Zbl 0945.76028

[10] Howison, S.D., Complex variable methods in Hele-Shaw moving boundary problems. Euro J. Appl. Math., 3, 1992, 209-224. | MR 1182213 | Zbl 0759.76022

[11] Ladyženskaja, O.A. - Solonnikov, V.A. - Ural'Ceva, N.N., Linear and Quasilinear Equations of Parabolic Type. AMS Translations of Mathematical Monographs, 23, 1968. | MR 241822 | Zbl 0174.15403

[12] Ya, P., On the motion of the oil contour. Dokl. Akad. Nauk. S.S.S.R., vol. 47, 1945, 254-257. | Zbl 0061.46112

[13] Richardson, S., Hele-Shaw flows with a free boundary produced by the injection of fluid into a narrow channel. JFM, 56, 1972, 606-618. | Zbl 0256.76024

[14] Saffman, P.G., Selection mechanisms and stability of fingers and bubbles in Hele-Shaw cells. IMA J. Appl. Math., 46, 1991, 137-145. | MR 1106258 | Zbl 0718.76113

[15] Saffman, P.G. - Taylor, G.I., The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. Roy. Soc., A 245, 1958, 312-329. | MR 97227 | Zbl 0086.41603

[16] Wylie, J.J. - Lister, J.R., The effects of temperature-dependent viscosity on flow in a cooled channel with application to basaltic fissure eruptions. J. Fluid Mech., 305, 1995, 239-261. | Zbl 0879.76028

[17] Wylie, J.J. - Lister, J.R., Stability of straining flow with surface cooling and temperature-dependent viscosity. J. Fluid Mech., 365, 1998, 369-381. | Zbl 0907.76036