We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].
Dimostriamo un risultato di controllabilità esatta per calotte sottili, utilizzando il metodo di Fourier e miglioramenti recenti di teoremi di tipo Ingham, dati in un precedente articolo [2].
@article{RLIN_2001_9_12_1_43_0, author = {Paola Loreti}, title = {Exact controllability of shells in minimal time}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {12}, year = {2001}, pages = {43-48}, zbl = {1170.93310}, mrnumber = {1898447}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_1_43_0} }
Loreti, Paola. Exact controllability of shells in minimal time. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 43-48. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_1_43_0/
[1] Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital., B (8), II - B, n. 1 febbraio 1999, 33-63. | MR 1794544 | Zbl 0924.42022
- - ,[2] Généralisation d’un théorème de Beurling et application à la théorie du contrȏle. C. R. Acad. Sci. Paris Sér. I Math., 330 (4), 2000, 281-286. | MR 1753294 | Zbl 0964.42019
- - ,[3] 2, Birkhäuser, Boston 1989.
- - - , The Collected Works of Arne Beurling. Vol.[4] Introduzione alla controllabilità esatta per la calotta sferica. Quaderno IAC 8/1989.
- - ,[5] Exact Controllability of a shallow shell model. Int. Series of Num. Math., 107, 1992, 85-97. | MR 1223361 | Zbl 0766.73044
- - ,[6] Exact controllability of a spherical shell via harmonic analysis. In: - (eds.), Boundary Values Problems for Partial Differential Equations and Applications. Masson, Paris 1993. | MR 1260466 | Zbl 0803.73052
- - ,[7] Spectral problems for thin shells and exact controllability. In: Spectral Analysis of Complex Structures. Travaux en cours, 49, Hermann, Paris 1995, 35-57. | MR 1488734 | Zbl 0840.35112
- - ,[8] Some trigonometrical inequalities with applications in the theory of series. Math. Z., 41, 1936, 367-379. | MR 1545625 | Zbl 0014.21503
,[9] On a theorem of Ingham. J. Fourier Anal. Appl., 3, 1997, n. 5, 577-582. | MR 1491935 | Zbl 0939.42004
- - ,[10] Ingham type theorems for vector-valued functions and observability of coupled linear systems. SIAM J. Control Optim., 37, 1998, 461-485. | MR 1655862 | Zbl 0963.93013
- ,[11] Observability of compactly perturbed systems. J. Math. Anal. Appl., 243, 2000, 409-428. | MR 1741532 | Zbl 0952.34047
- ,[12] | MR 1061153 | Zbl 0696.73034
, Boundary Stabilization of Thin Plates. SIAMStudies in Appl. Math., Philadelphia1989.[13] | MR 953313 | Zbl 0662.73039
- , Modelling, Analysis and Control of Thin Plates. Masson, Paris 1988.[14] Exact controllability, stabilization and perturbations for distributed systems. SIAM J. Control Optim., 30, 1988, 1-68. | MR 931277 | Zbl 0644.49028
,[15] 1-2, Masson, Paris1988. | Zbl 0653.93002
, Contrôlabilité exacte et stabilisation de systèmes distribués. Voll.[16] Application of a new Ingham type theorem to the control of spherical shells. In: (ed.), Proceedings of the 11th IFAC International Workshop Control Applications of Optimization (St. Petersburg, Russia, July 3-6, 2000). Pergamon, 2000.
,[17] | JFM 47.0750.09 | MR 10851 | Zbl 0063.03651
, A treatise on the mathematical theory of elasticity. Dover, New York1944.[18] Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures Appl., 71, 1992, 379-406. | MR 1191581 | Zbl 0833.47011
,[19] | MR 134026
, Theory of elastic stability. McGraw-Hill, New York1936. , Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford1962.