Exact controllability of shells in minimal time
Loreti, Paola
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001), p. 43-48 / Harvested from Biblioteca Digitale Italiana di Matematica

We prove an exact controllability result for thin cups using the Fourier method and recent improvements of Ingham type theorems, given in a previous paper [2].

Dimostriamo un risultato di controllabilità esatta per calotte sottili, utilizzando il metodo di Fourier e miglioramenti recenti di teoremi di tipo Ingham, dati in un precedente articolo [2].

Publié le : 2001-03-01
@article{RLIN_2001_9_12_1_43_0,
     author = {Paola Loreti},
     title = {Exact controllability of shells in minimal time},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {12},
     year = {2001},
     pages = {43-48},
     zbl = {1170.93310},
     mrnumber = {1898447},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2001_9_12_1_43_0}
}
Loreti, Paola. Exact controllability of shells in minimal time. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 12 (2001) pp. 43-48. http://gdmltest.u-ga.fr/item/RLIN_2001_9_12_1_43_0/

[1] Baiocchi, C. - Komornik, V. - Loreti, P., Ingham type theorems and applications to control theory. Boll. Un. Mat. Ital., B (8), II - B, n. 1 febbraio 1999, 33-63. | MR 1794544 | Zbl 0924.42022

[2] Baiocchi, C. - Komornik, V. - Loreti, P., Généralisation d’un théorème de Beurling et application à la théorie du contrȏle. C. R. Acad. Sci. Paris Sér. I Math., 330 (4), 2000, 281-286. | MR 1753294 | Zbl 0964.42019

[3] Carleson, L. - Malliavin, P. - Neuberger, J. - Wermer, J., The Collected Works of Arne Beurling. Vol. 2, Birkhäuser, Boston 1989.

[4] Geymonat, G. - Loreti, P. - Valente, V., Introduzione alla controllabilità esatta per la calotta sferica. Quaderno IAC 8/1989.

[5] Geymonat, G. - Loreti, P. - Valente, V., Exact Controllability of a shallow shell model. Int. Series of Num. Math., 107, 1992, 85-97. | MR 1223361 | Zbl 0766.73044

[6] Geymonat, G. - Loreti, P. - Valente, V., Exact controllability of a spherical shell via harmonic analysis. In: J.-L. Lions - C. Baiocchi (eds.), Boundary Values Problems for Partial Differential Equations and Applications. Masson, Paris 1993. | MR 1260466 | Zbl 0803.73052

[7] Geymonat, G. - Loreti, P. - Valente, V., Spectral problems for thin shells and exact controllability. In: Spectral Analysis of Complex Structures. Travaux en cours, 49, Hermann, Paris 1995, 35-57. | MR 1488734 | Zbl 0840.35112

[8] Ingham, A. E., Some trigonometrical inequalities with applications in the theory of series. Math. Z., 41, 1936, 367-379. | MR 1545625 | Zbl 0014.21503

[9] Jaffard, S. - Tucsnak, M. - Zuazua, E., On a theorem of Ingham. J. Fourier Anal. Appl., 3, 1997, n. 5, 577-582. | MR 1491935 | Zbl 0939.42004

[10] Komornik, V. - Loreti, P., Ingham type theorems for vector-valued functions and observability of coupled linear systems. SIAM J. Control Optim., 37, 1998, 461-485. | MR 1655862 | Zbl 0963.93013

[11] Komornik, V. - Loreti, P., Observability of compactly perturbed systems. J. Math. Anal. Appl., 243, 2000, 409-428. | MR 1741532 | Zbl 0952.34047

[12] Lagnese, J., Boundary Stabilization of Thin Plates. SIAMStudies in Appl. Math., Philadelphia1989. | MR 1061153 | Zbl 0696.73034

[13] Lagnese, J. - Lions, J.-L., Modelling, Analysis and Control of Thin Plates. Masson, Paris 1988. | MR 953313 | Zbl 0662.73039

[14] Lions, J.-L., Exact controllability, stabilization and perturbations for distributed systems. SIAM J. Control Optim., 30, 1988, 1-68. | MR 931277 | Zbl 0644.49028

[15] Lions, J.-L., Contrôlabilité exacte et stabilisation de systèmes distribués. Voll. 1-2, Masson, Paris1988. | Zbl 0653.93002

[16] Loreti, P., Application of a new Ingham type theorem to the control of spherical shells. In: V. Zakharov (ed.), Proceedings of the 11th IFAC International Workshop Control Applications of Optimization (St. Petersburg, Russia, July 3-6, 2000). Pergamon, 2000.

[17] Love, A. E. H., A treatise on the mathematical theory of elasticity. Dover, New York1944. | JFM 47.0750.09 | MR 10851 | Zbl 0063.03651

[18] Sanchez, E., Asymptotic and spectral properties of a class of singular-stiff problems. J. Math. Pures Appl., 71, 1992, 379-406. | MR 1191581 | Zbl 0833.47011

[19] Timoshenko, S., Theory of elastic stability. McGraw-Hill, New York1936. | MR 134026

[20] Titchmarsh, E. C., Eigenfunction Expansions Associated with Second-Order Differential Equations. Clarendon Press, Oxford1962. | MR 176151 | Zbl 0099.05201