Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems
Berti, Massimiliano ; Bolle, Philippe
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000), p. 235-243 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider the problem of Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. We prove a shadowing theorem which improves the known estimates for the diffusion time. We also justify for three time scales systems that the splitting of the separatrices is correctly predicted by the Poincaré-Melnikov function.

Consideriamo il problema della diffusione di Arnold per sistemi Hamiltoniani isocroni quasi-integrabili. Dimostriamo un teorema di shadowing che migliora le stime sul tempo di diffusione sinora note. Giustifichiamo inoltre, per sistemi a tre scale temporali, che lo splitting delle separatrici è correttamente previsto dalla funzione di Poincaré-Melnikov.

Publié le : 2000-12-01
@article{RLIN_2000_9_11_4_235_0,
     author = {Massimiliano Berti and Philippe Bolle},
     title = {Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {11},
     year = {2000},
     pages = {235-243},
     zbl = {1009.37044},
     mrnumber = {1837581},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_4_235_0}
}
Berti, Massimiliano; Bolle, Philippe. Diffusion time and splitting of separatrices for nearly integrable isochronous Hamiltonian systems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 235-243. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_4_235_0/

[1] Ambrosetti, A. - Badiale, M., Homoclinics: Poincaré-Melnikov type results via a variational approach. C. R. Acad. Sci. Paris, t. 323, Série I, 1996, 753-758; Ann. Inst. Henri Poincaré - Analyse nonlin., vol. 15, n. 2, 1998, 233-252. | MR 1614571 | Zbl 1004.37043

[2] Angenent, S., A variational interpretation of Melnikov’s function and exponentially small separatrix splitting. In: D.A. Salamon (ed.), Symplectic geometry. London Math. Soc., Lecture Notes Series, vol. 192, Cambridge University Press 1993. | MR 1297127 | Zbl 0810.34037

[3] Arnold, V.I., Instability of dynamical systems with several degrees of freedom. Sov. Math. Dokl., 6, 1964, 581-585. | Zbl 0135.42602

[4] Berti, M. - Bolle, P., Homoclinics and Chaotic Behaviour for Perturbed Second order Systems. Annali di Mat. Pura e Applicata, (IV), vol. CLXXVI, 1999, 323-378. | MR 1746547 | Zbl 0957.37019

[5] Berti, M. - Bolle, P., Variational construction of homoclinics and chaos in presence of a saddle-saddle equilibrium. Annali della Scuola Normale Superiore di Pisa, (4) 27, fasc. 2, 1998, 331-377; Rend. Mat. Acc. Lincei, s. 9, v. 9, 1998, 167-175. | MR 1664692 | Zbl 0938.34039

[6] Berti, M. - Bolle, P., Arnold’s diffusion for nearly integrable isochronous Hamiltonian systems. Preprint SISSA 98/2000/M, october 2000. | MR 1837581

[7] Bessi, U. - Chierchia, L. - Valdinoci, E., Upper Bounds on Arnold Diffusion Time via Mather theory. Journal de Mathématiques Pures et Appliquées, neuvième série, to appear. | MR 1810511 | Zbl 0986.37052

[8] Chierchia, L. - Gallavotti, G., Drift and diffusion in phase space. Ann. Inst. Henri Poincaré, Phys. Théor., 60, 1994, 1-144; see also Erratum in vol. 68, 1998, 135. | MR 1259103 | Zbl 1010.37039

[9] Cresson, J., Conjecture de Chirikov et Optimalité des exposants de stabilité du théorème de Nekhoroshev. Dép. de Mathématiques de Besançon, 1998, preprint.

[10] Delshams, A. - Gelfreich, V.G. - Jorba, V. G. - Seara, T. M., Exponentially small splitting of separatrices under fast quasi-periodic forcing. Comm. Math. Ph., 189, 1997, 35-71. | MR 1478530 | Zbl 0897.34042

[11] Gallavotti, G., Arnold’s Diffusion in Isochronous Systems. Mathematical Physics, Analysis and Geometry, 1, 1999, 295-312. | MR 1692234 | Zbl 0936.37031

[12] Gallavotti, G. - Gentile, G. - Mastropietro, V., Separatrix splitting for systems with three time scales. Commun. Math. Phys., 202, 1999, 197-236. | MR 1686531 | Zbl 0936.37034

[13] Gallavotti, G. - Gentile, G. - Mastropietro, V., A possible counter example to a paper by Rudnew and Wiggins. Physica D, 137, 2000, 202-204. | MR 1738773 | Zbl 0997.37036

[14] Lochak, P., Arnold diffusion: a compendium of remarks and questions. Proceedings of 3DHAM’s Agaro, 1995. | Zbl 0986.37054

[15] Lochak, P. - Marco, J.P. - Sauzin, D., On the splitting of invariant manifolds in multidimensional Hamiltonian systems. Université Jussieu, preprint. | Zbl 1038.70001

[16] Marco, J.P., Transitions le long des chaȋnes de tores invariants pour les systèmes hamiltoniens analytiques. Ann. Inst. Henri Poincaré, vol. 64, 1995, 205-252. | MR 1386217 | Zbl 0854.70011

[17] Pumarino, A. - Valls, C., Three time scales systems exhibiting persisent Arnold’s diffusion. Preprint; www.ma.utexas.edu/mp arc.