We present a simple proof of the fact that if is a bounded domain in , , which is convex and symmetric with respect to orthogonal directions, , then the nodal sets of the eigenfunctions of the laplacian corresponding to the eigenvalues must intersect the boundary. This result was proved by Payne in the case for the second eigenfunction, and by other authors in the case of convex domains in the plane, again for the second eigenfunction.
Viene presentata una semplice dimostrazione del fatto che se é un dominio limitato di , , convesso e simmetrico in direzioni ortogonali, , allora gli insiemi nodali delle autofunzioni del laplaciano corrispondenti agli autovalori hanno intersezione non vuota con la frontiera del dominio. Questo risultato era stato dimostrato da Payne nel caso per la seconda autofunzione, e da altri autori nel caso di domini piani convessi, sempre per la seconda autofunzione.
@article{RLIN_2000_9_11_3_175_0, author = {Lucio Damascelli}, title = {On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\mathbb{R}^{N}$}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {11}, year = {2000}, pages = {175-181}, zbl = {1042.35036}, mrnumber = {1841691}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_3_175_0} }
Damascelli, Lucio. On the nodal set of the second eigenfunction of the laplacian in symmetric domains in $\mathbb{R}^{N}$. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 175-181. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_3_175_0/
[1] Nodal lines of eigenfunctions of the fixed membrane problem in general convex domains. Comm. Math. Helv., 69, 1994, 142-154. | MR 1259610 | Zbl 0838.35006
,[2] The principal eigenvalue and maximum principle for second order elliptic operators in general domains. Comm. Pure Appl. Math., 47, 1994, 47-92. | MR 1258192 | Zbl 0806.35129
- - ,[3] 1, Interscience, New York 1953. | MR 65391 | Zbl 0051.28802
- , Methods of mathematical physics. Vol.[4] Qualitative properties of positive solutions of semilinear elliptic equations in symmetric domains via the maximum principle. Annales Inst. H. Poincaré, 16 (5), 1999, 631-652. | MR 1712564 | Zbl 0935.35049
- - ,[5] On the second eigenfunction of the laplacian in . Comm. Math. Phys., 111, 1987, 161-166. | MR 899848 | Zbl 0637.35058
,[6] A counterexample to the nodal domain conjecture and a related semilinear equation. Proc. Amer. Math. Soc., 102 (2), 1988, 271-277. | MR 920985 | Zbl 0652.35085
- ,[7] On the nodal line of the second eigenfunction of the laplacian in . J. Diff. Geom., 35, 1992, 255-263. | MR 1152231 | Zbl 0769.58056
,[8] Isoperimetric inequalities and applications. SIAM Review, 9, 1967, 453-488. | MR 218975 | Zbl 0154.12602
,[9] On two conjectures in the fixed membrane eigenvalue problem. Z. Angew. Math. Phys., 24, 1973, 721-729. | MR 333487 | Zbl 0272.35058
,[10] 27, Princeton University Press, Princeton, NJ 1951. | Zbl 0044.38301
- , Isoperimetric Inequalities in Mathematical Physics. Annals of Math. Studies,[11] 102, Princeton University Press, Princeton, NJ1982, 669-706. | MR 645762 | Zbl 0471.00020
, Problem section, seminar on differential geometry. Annals of Math. Studies,[12] On the multiplicity of the second eigenvalue of Laplacian in . Comm. Anal. Geom., 3, 1995, 273-296. | MR 1362653 | Zbl 0849.35086
,