Some properties of Carnot-Carathéodory balls in the Heisenberg group
Monti, Roberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000), p. 155-167 / Harvested from Biblioteca Digitale Italiana di Matematica

Using the exact representation of Carnot-Carathéodory balls in the Heisenberg group, we prove that: 1. Hndz,t=1 in the classical sense for all z,tHn with z0, where d is the distance from the origin; 2. Metric balls are not optimal isoperimetric sets in the Heisenberg group.

Usando la rappresentazione esatta per le sfere di Carnot-Carath´ eodory nel gruppo di Heisenberg, proviamo che: 1. Hndz,t=1 in senso classico per ogni z,tHn con z0, dove d è la distanza dall’origine; 2. Le sfere metriche non sono insiemi isoperimetrici ottimali nel gruppo di Heisenberg.

Publié le : 2000-09-01
@article{RLIN_2000_9_11_3_155_0,
     author = {Roberto Monti},
     title = {Some properties of Carnot-Carath\'eodory balls in the Heisenberg group},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {11},
     year = {2000},
     pages = {155-167},
     zbl = {1197.53064},
     mrnumber = {1841689},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_3_155_0}
}
Monti, Roberto. Some properties of Carnot-Carathéodory balls in the Heisenberg group. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 155-167. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_3_155_0/

[1] Barbu, V., Mathematical methods in optimization of differential systems. Kluwer, Dordrecht1994. | MR 1325922 | Zbl 0819.49002

[2] Bellaïche, A., The tangent space in subriemannian geometry. In: A. Bellaïche - J. Risler (eds), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser, Basel 1996. | Zbl 0862.53031

[3] Bellettini, G. - Paolini, M. - Venturini, S., Some results in surface measure in Calculus of Variations. Ann. Mat. Pura Appl., (4), 170, 1996, 329-357. | MR 1441625 | Zbl 0890.49020

[4] Brockett, R.W., Control theory and singular Riemannian geometry. In: P.J. Hilton - G.S. Young, New directions in applied mathematics. Springer-Verlag, New York 1981. | MR 661282 | Zbl 0483.49035

[5] Yu, D. - Zalgaller, V.A., Geometric inequalities. Springer-Verlag, Berlin 1988. | MR 936419 | Zbl 0633.53002

[6] De Giorgi, E., Sulla proprietà isoperimetrica dell’ipersfera, nella classe degli insiemi aventi frontiera orientata di misura finita. Atti Acc. Lincei Mem. fis., s. 8, v. 5, 1958, 33-44. | MR 98331 | Zbl 0116.07901

[7] Folland, G.B. - Stein, E.M., Hardy spaces on homogeneous groups. Princeton University Press, 1982. | MR 657581 | Zbl 0508.42025

[8] Franchi, B., Stime subellittiche e metriche riemanniane singolari II. Seminario di Analisi Matematica, Università di Bologna, 1983, VIII-1 VIII-17.

[9] Franchi, B. - Gallot, S. - Wheeden, R.L., Sobolev and isoperimetric inequalities for degenerate metrics. Math. Ann., 300, 1994, 557-571. | MR 1314734 | Zbl 0830.46027

[10] Franchi, B. - Serapioni, R. - Serra Cassano, F., Meyers-Serrin Type Theorems and Relaxation of Variational Integrals Depending Vector Fields. Houston Journal of Mathematics, 22, 4, 1996, 859-889. | MR 1437714 | Zbl 0876.49014

[11] Franchi, B. - Serapioni, R. - Serra Cassano, F., Approximation and Imbedding Theorems for Weighted Sobolev Spaces Associated with Lipschitz Continuous Vector Fields. Bollettino U.M.I., 7, 11-B, 1997, 83-117. | MR 1448000 | Zbl 0952.49010

[12] Franchi, B. - Serapioni, R. - Serra Cassano, F., Rectifiability and perimeter in the Heisenberg group. Preprint 2000. | MR 1871966 | Zbl 1057.49032

[13] Garofalo, N. - Nhieu, D.M., Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Comm. Pure Appl. Math., 49, 1996, 1081-1144. | MR 1404326 | Zbl 0880.35032

[14] Garofalo, N. - Nhieu, D.M., Lipschitz continuity, global smooth approximations and extension theorems for Sobolev functions in Carnot Carathéodory spaces. Jour. Analyse Mathematique, 74, 1998, 67-97. | MR 1631642 | Zbl 0906.46026

[15] Gaveau, B., Principe de moindre action, propagation de la chaleur et estimées sous elliptiques sur certains groupes nilpotents. Acta Math., 139, 1977, 1-2, 95-153. | MR 461589 | Zbl 0366.22010

[16] Gromov, M., Carnot-Carathéodory spaces seen from within. In: A. Bellaïche - J. Risler (eds.), Sub-Riemannian Geometry. Progress in Mathematics, 144, Birkhäuser, Basel 1996. | MR 1421823 | Zbl 0864.53025

[17] Gromov, M., Structures métriques pour les variétés riemanniennes. CEDIC, Paris1981. | MR 682063 | Zbl 0509.53034

[18] Jerison, D. - Sanchez Calle, A., Subelliptic, second order differential operators. In: Complex analysis III. Springer, 1987, 46-77. | MR 922334 | Zbl 0634.35017

[19] Liu, W. - Sussmann, H.J., Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Amer. Math. Soc., 118, 1995. | MR 1303093 | Zbl 0843.53038

[20] Montgomery, R., Abnormal minimizers. SIAM J. Control Optim., 32, 1994, 1605-1620. | MR 1297101 | Zbl 0816.49019

[21] Monti, R. - Serra Cassano, F., Surface measures in Carnot-Carathéodory spaces. Forthcoming. | Zbl 1032.49045

[22] Pansu, P., Une inégalité isopérimétrique sur le groupe de Heisenberg. C.R. Acad. Sci. Paris, 295, I, 1982, 127-130. | MR 676380 | Zbl 0502.53039

[23] Stein, E.M., Harmonic Analysis. Princeton University Press, 1993. | MR 1232192 | Zbl 0821.42001

[24] Strichartz, R.S., Sub-Riemannian geometry. J. Differential Geom., 24, 1986, 221-263.[Corrections to «Sub-Riemannian geometry». J. Differential Geom., 30, 1989, 595-596]. | MR 862049 | Zbl 0609.53021