We study regularity of stochastic convolutions solving Volterra equations on driven by a spatially homogeneous Wiener process. General results are applied to stochastic parabolic equations with fractional powers of Laplacian.
Viene studiata la regolarità di convoluzioni stocastiche risolvendo un’equazione di Volterra in perturbata da un processo di Wiener spazialmente omogeneo. I risultati generali ottenuti sono applicati a equazioni paraboliche stocastiche con una potenza frazionaria del Laplaciano.
@article{RLIN_2000_9_11_3_141_0, author = {Anna Karczewska and Jerzy Zabczyk}, title = {Regularity of solutions to stochastic Volterra equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {11}, year = {2000}, pages = {141-154}, zbl = {1072.60051}, mrnumber = {1841688}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_3_141_0} }
Karczewska, Anna; Zabczyk, Jerzy. Regularity of solutions to stochastic Volterra equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 141-154. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_3_141_0/
[1] | MR 611857 | Zbl 0478.60059
, The geometry of random fields. John Wiley & Sons, New York 1981.[2] Langevin equation for -valued Gaussian processes and fluctuation limits of infinite particle systems. Probab. Theory and Related Fields, 73, 1986, 227-244. | MR 855224 | Zbl 0595.60096
- ,[3] Itȏ stochastic integral in the dual of a nuclear space. Journal of Multivariate Analysis, 32, 1989, 40-58. | MR 1022351 | Zbl 0692.60042
- ,[4] Stochastic integral for inhomogeneous Wiener process in the dual of a nuclear space. Journal of Multivariate Analysis, 34, 1990, 185-210. | MR 1073105 | Zbl 0716.60056
- ,[5] Stationary distributions for generalized Ornstein-Uhlenbeck processes in conuclear space. Preprint, 1997.
- ,[6] Invariant measures for generalized Langevin equations in conuclear space. Stochastic Processes and Their Applications, 84, 1999, 1-24. | MR 1720095 | Zbl 0997.60067
- ,[7] Some results on stochastic convolutions arising in Volterra equations perturbed by noise. Rend. Mat. Acc. Lincei, s. 9, v. 7, 1996, 147-153. | MR 1454409 | Zbl 0876.60045
- ,[8] White noise perturbation of the heat equation in materials with memory. Dynamic Systems and Applications, 6, 1997, 441-460. | MR 1487470 | Zbl 0893.60035
- ,[9] White noise perturbation of the equations of linear parabolic viscoelasticity. Rendiconti Trieste, 1997. | Zbl 0911.45010
- - ,[10] The stochastic wave equation in two spatial dimensions. The Annals of Probability, No. 1, 26, 1998, 187-212. | MR 1617046 | Zbl 0938.60046
- ,[11] Stochastic equations in infinite dimensions. Encyclopedia of mathematics and its applications, vol. 44, Cambridge University Press, Cambridge 1992. | MR 1207136 | Zbl 0761.60052
- ,[12] Generalized solutions of a class of nuclear-space-valued stochastic evolution equations. Appl. Math. Optim., 22, 1990, 241-263. | MR 1068182 | Zbl 0714.60048
- ,[13] | Zbl 0144.17202
- , Generalized functions 4. Applications of harmonic analysis. Academic Press, New York 1964.[14] Persistence criteria for a class of critical branching particle systems in continuous time. The Annals of Probability, No. 1, 19, 1991, 266-288. | MR 1085336 | Zbl 0732.60093
- ,[15] Distribution valued processes arising from independent Brownian motions. Mathematische Zeitschrift, 182, 1983, 17-33. | MR 686883 | Zbl 0488.60052
,[16] | MR 771478 | Zbl 0547.60064
, Foundations of stochastic differential equations in infinite dimensional spaces. SIAM, Philadelphia1984.[17] A note on stochastic wave equations. Preprint 574, Institute of Mathematics, Polish Academy of Sciences, Warsaw 1997. In: - (eds.), Evolution Equations and their Applications in Physical and Life Sciences. Proceedings of the 6th International Conference (Bad Herrenhalb 1998), Marcel Dekker, to appear. | MR 1818028 | Zbl 0978.60066
- ,[18] Stochastic PDEs with function-valued solutions. Preprint 33, Scuola Normale Superiore di Pisa, Pisa 1997. In: - - - (eds.), Infinite-Dimensional Stochastic Analysis. Proceedings of the Colloquium of the Royal Netherlands Academy of Arts and Sciences (Amsterdam 1999), North Holland, to appear. | MR 1832378 | Zbl 0990.60065
- ,[19] Regularity of solutions to stochastic Volterra equations. Preprint 17, Scuola Normale Superiore di Pisa, Pisa 1999. | MR 1841688 | Zbl 1072.60051
- ,[20] | MR 350027 | Zbl 0253.31001
, Foundations of modern potential theory. Springer-Verlag, Berlin1972.[21] On stochastic wave equation in two space dimensions: regularity of the solution and its density. Preprint 98/9, University Paris 10, Nanterre 1998. | Zbl 1028.60061
- ,[22] A stochastic wave equation in two space dimension: smoothness of the law. The Annals of Probability, to appear. | Zbl 0944.60067
- ,[23] Long time existence for the wave equations with a noise term. The Annals of Probability, No. 1, 25, 1997, 133-151. | MR 1428503 | Zbl 0884.60054
,[24] Stochastic evolution equations with a spatially homogeneous Wiener process. Stochastic Processes Appl., 72, 1997, 187-204. | MR 1486552 | Zbl 0943.60048
- ,[25] Nonlinear stochastic wave and heat equations. Preprint 584, Institute of Mathematics, Polish Academy of Sciences, Warsaw 1998. | MR 1749283 | Zbl 0959.60044
- ,[26] | MR 1238939 | Zbl 0784.45006
, Evolutionary integral equations and applications. Birkhäuser, Basel1993.[27] Stochastic Volterra equations in the plane: smoothness of the law. Preprint 226, Universitat de Barcelona 1997. | Zbl 0991.60052
- ,[28] Large deviations for stochastic Volterra equations in the plane. Preprint 233, Universitat de Barcelona 1997. | Zbl 0983.60010
- ,[29] On space-time regularity for the stochastic heat equation on Lie groups. Journal of Functional Analysis, 169, 1999, 559-604. | MR 1730556 | Zbl 0953.60046
- ,[30] An introduction to stochastic partial differential equations. In: (ed.), Ecole d’Eté de Probabilités de Saint-Flour XIV-1984. Lecture Notes in Math., 1180, Springer-Verlag, New York-Berlin 1986, 265-439. | MR 876085 | Zbl 0608.60060
,