Stochastic invariance and consistency of financial models
Zabczyk, Jerzy
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000), p. 67-80 / Harvested from Biblioteca Digitale Italiana di Matematica

The paper is devoted to a connection between stochastic invariance in infinite dimensions and a consistency question of mathematical finance. We derive necessary and sufficient conditions for stochastic invariance of Nagumo’s type for stochastic equations with additive noise. They are applied to Ornstein-Uhlenbeck processes and to specific financial models. The case of evolution equations with general noise is discussed also and a comparison with recent results obtained by geometric methods is presented as well.

Questo lavoro riguarda la connessione fra l’invarianza stocastica in dimensione infinita e un problema di consistenza in finanza matematica. Vengono date condizioni necessarie e sufficienti di tipo Nagumo per l’invarianza di equazioni stocastiche con rumore additivo. Esse sono applicate a processi di Ornstein-Uhlenbeck e specifici modelli finanziari. Vengono anche discusse equazioni di evoluzione con rumore generale e viene fatto un paragone con recenti risultati ottenuti con metodi geometrici.

Publié le : 2000-06-01
@article{RLIN_2000_9_11_2_67_0,
     author = {Jerzy Zabczyk},
     title = {Stochastic invariance and consistency of financial models},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {11},
     year = {2000},
     pages = {67-80},
     zbl = {0978.60039},
     mrnumber = {1797512},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_2_67_0}
}
Zabczyk, Jerzy. Stochastic invariance and consistency of financial models. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 67-80. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_2_67_0/

[1] Aubin, J. P., Viability Theory. Birkhäuser, Boston-Basel1991. | MR 1134779 | Zbl 1179.93001

[2] Aubin, J. P. - Da Prato, G., The viability theorem for stochastic differential inclusions. Stochastic Analysis and Applications, 16, 1998, 1-15. | MR 1603852 | Zbl 0931.60059

[3] Bally, V. - Millet, A. - Sanz-Sole, M., Approximation and support theorem in Holder norm for parabolic stochastic partial differential equations. Annals of Probability, 23, 1995, 178-222. | MR 1330767 | Zbl 0835.60053

[4] Björk, T. - Christensen, B. J., Interest rate dynamics and consistent forward rate curves. Math. Finance, to appear. | MR 1849252 | Zbl 0980.91030

[5] Björk, T. - Gombani, A., Minimal realizations of forward rates. Finance and Stochastics, vol. 3, 1999, 423-432.

[6] Björk, T. - Di Masi, G. - Kabanov, Yu. - Runggaldier, W., Towards a general theory of bond markets. Finance and Stochastic, vol. 1, 1996, 141-174. | MR 2976683 | Zbl 0889.90019

[7] Björk, T. - Lars Svensson, , On the existence of finite dimensional realizations for nonlinear forward rate models. Preprint, March 1999. | Zbl 1055.91017

[8] Brace, A. - Gątarek, D. - Musiela, M., The market model of interest rate dynamics. Math. Finance, 7, 1997, 127-154. | MR 1446645 | Zbl 0884.90008

[9] Brace, A. - Musiela, M., A multifactor Gauss Markov implementation of Heath, Jarrow and Morton. Math. Finance, 4, 1994, 259-283. | Zbl 0884.90016

[10] Bouchaud, J. P. - Cont, R. - El Karoui, N. - Potters, M. - Sagna, N., Phenomenology of the interest rate curve: a statistical analysis of the term structure deformations. Working paper, 1997. (http:= =econwpa.wustl.edu/ewp-fin/9712009). | Zbl 1009.91036

[11] Cont, R., Modelling term structure dynamics: an infinite dimensional approach. International Journal of Theoretical and Applied Finance, to appear. | MR 2144706 | Zbl 1113.91020

[12] Da Prato, G. - Zabczyk, J., Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge-New York 1992. | MR 1207136 | Zbl 1140.60034

[13] Da Prato, G. - Zabczyk, J., Ergodicity for Infinite Dimensional Systems. Cambridge University Press, Cambridge-New York 1996. | MR 1417491 | Zbl 0849.60052

[14] Filipovic, D., Invariant Manifolds for Weak Solutions to Stochastic Equations. Manuscript, March 1999. | MR 1800535 | Zbl 0970.60069

[15] Gątarek, D., Some remarks on the market model of interest rates. Control and Cybernetics, vol. 25, 1996, 1233-1244. | MR 1454714 | Zbl 0866.90016

[16] Heath, D. - Jarrow, R. - Morton, A., Bond pricing and the term structure of interest rates: a new methodology. Econometrica, 60, 1992, 77-101. | Zbl 0751.90009

[17] Jachimiak, W., A note on invariance for semilinear differential equations. Bull. Pol. Sci., 44, 1996, 179-183. | MR 1466843 | Zbl 0892.47064

[18] Jachimiak, W., Invariance problem for evolution equations. PhD Thesis, Institute of Mathematics Polish Academy of Sciences, Warsaw1998 (in Polish).

[19] Jachimiak, W., Stochastic invariance in infinite dimensions. Preprint 591, Institute of Mathematics Polish Academy of Sciences, Warsaw, October 1998.

[20] Milian, A., Nagumo’s type theorems for stochastic equations. PhD Thesis, Institute of Mathematics Polish Academy of Sciences, 1994.

[21] Milian, A., Invariance for stochastic equations with regular coefficients. Stochastic Analysis and Applications, 15, 1997, 91-101. | MR 1429859 | Zbl 0876.60034

[22] Millet, A. - Sanz-Sole, M., The support of the solution to a hyperbolic spde. Probab. Th. Rel. Fields, 84, 1994, 361-387. | MR 1262971 | Zbl 0794.60061

[23] Millet, A. - Sanz-Sole, M., Approximation and support theorem for a two space-dimensional wave equations. Mathematical Sciences Research Institute, Preprint No. 1998-020, Berkeley, California.

[24] Musiela, M., Stochastic PDEs and term structure models. Journees International de Finance, IGR-AFFI, La Baule1993.

[25] Musiela, M. - Rutkowski, M., Martingale Methods in Financial Modelling. Applications of Mathematics, vol. 36, Springer-Verlag, 1997. | MR 1474500 | Zbl 0906.60001

[26] Pavel, N., Invariant sets for a class of semilinear equations of evolution. Nonl. Anal. Theor., 1, 1977, 187-196. | MR 637080 | Zbl 0344.45001

[27] Pavel, N., Differential equations, flow invariance. PitmanLecture Notes, Boston1984.

[28] Tessitiore, G. - Zabczyk, J., Comments on transition semigroups and stochastic invariance. Scuola Normale Superiore, Pisa 1998, preprint. | MR 1678432

[29] Twardowska, K., An approximation theorem of Wong-Zakai type for nonlinear stochastic partial differential equations. Stoch. Anal. Appl., 13, 1995, 601-626. | MR 1353194 | Zbl 0839.60059

[30] Twardowska, K., Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions. Dissertationes Mathematicae, CCCXXV, 1993. | MR 1215779 | Zbl 0777.60051

[31] Stroock, D. W. - Varadhan, S. R. S., On the support of diffusion processes with applications to the strong maximum principle. Proceedings 6th Berkeley Symposium Math. Statist. Probab., vol. 3, University of California Press, Berkeley 1972, 333-359. | MR 400425 | Zbl 0255.60056

[32] Yosida, K., Functional Analysis. Springer-Verlag, 1965.

[33] Zabczyk, J., Mathematical Control Theory: An Introduction. Birkhäuser, Boston1992. | MR 1193920 | Zbl 1123.93003

[34] Zabczyk, J., Stochastic invariance and consistency of financial models. Preprints di Matematica n. 7, Scuola Normale Superiore, Pisa1999. | MR 1797512 | Zbl 0978.60039