We give sufficient conditions for the discreteness of the spectrum of differential operators of the form in where and for Schrödinger operators in . Our conditions are also necessary in the case of polynomial coefficients.
In questa Nota si studiano operatori della forma in con , e operatori di Schrödinger in . Si danno condizioni sufficienti affinché lo spettro di un tale operatore differenziale sia discreto. Le condizioni trovate sono anche necessarie nel caso di coefficienti polinomiali.
@article{RLIN_2000_9_11_1_9_0, author = {Giorgio Metafune and Diego Pallara}, title = {Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {11}, year = {2000}, pages = {9-19}, zbl = {0982.35078}, mrnumber = {1797049}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_1_9_0} }
Metafune, Giorgio; Pallara, Diego. Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 9-19. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_1_9_0/
[1] On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | MR 1343161 | Zbl 0846.47004
- ,[2] | MR 1417491 | Zbl 0849.60052
- , Ergodicity for infinite dimensional systems. Cambridge U. P., 1996.[3] | MR 990239 | Zbl 0699.35006
, Heat kernels and spectral theory. Cambridge U. P., 1989.[4] | MR 1349825 | Zbl 0893.47004
, Spectral theory and differential operators. Cambridge U. P., 1995.[5] Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians. J. Funct. Anal., 59, 1984, 335-395. | MR 766493 | Zbl 0568.47034
- ,[6] properties of intrinsic Schrödinger semigroups. J. Funct. Anal., 65, 1986, 126-146. | MR 819177 | Zbl 0613.47039
- ,[7] | Zbl 0664.47014
- , Spectral theory and differential operators. Oxford U.P., 1990.[8] The uncertainty principle. Bull. Am. Math. Soc., 9, 1983, 129-206. | MR 707957 | Zbl 0526.35080
,[9] Discreteness of spectrum for the Schrödinger operators on manifolds with bounded geometry. preprint.
- ,[10] Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in . Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. | MR 1475774 | Zbl 0887.35062
,[11] On the Ornstein-Uhlenbeck operator in spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. | MR 1389786 | Zbl 0890.35030
,[12] Generation of smoothing semigroups by elliptic operators with unbounded coefficients in . Rend. Ist. Mat. Trieste, 28, 1997, 251-279. | MR 1602271 | Zbl 0899.35027
- ,[13] Optimal and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: - (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. | MR 1472521 | Zbl 0887.47034
- ,[14] Trace formulas for some singular differential operators and applications. Math. Nach., to appear. | MR 1743484 | Zbl 0961.34073
- ,[15] Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov Mat. Obšč., 2, 1953, 169-200 (in Russian). | MR 57422
,[16] | MR 751959 | Zbl 0401.47001
- , Methods of modern mathematical physics IV. Academic Press, 1978.[17] Schrödinger semigroups. Bull. Am. Math. Soc., 7, 1982, 447-526. | Zbl 0524.35002
,[18] Some quantum operators with discrete spectrum but classically continuous spectrum. Annals of Physics, 146, 1983, 209-220. | MR 701264 | Zbl 0547.35039
,