Discreteness of the spectrum for some differential operators with unbounded coefficients in Rn
Metafune, Giorgio ; Pallara, Diego
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000), p. 9-19 / Harvested from Biblioteca Digitale Italiana di Matematica

We give sufficient conditions for the discreteness of the spectrum of differential operators of the form Au=-u+F,u in Lμ2Rn where dμx=e-Fxdx and for Schrödinger operators in L2Rn. Our conditions are also necessary in the case of polynomial coefficients.

In questa Nota si studiano operatori della forma Au=-u+F,u in Lμ2Rn con dμx=e-Fxdx, e operatori di Schrödinger in L2Rn. Si danno condizioni sufficienti affinché lo spettro di un tale operatore differenziale sia discreto. Le condizioni trovate sono anche necessarie nel caso di coefficienti polinomiali.

Publié le : 2000-03-01
@article{RLIN_2000_9_11_1_9_0,
     author = {Giorgio Metafune and Diego Pallara},
     title = {Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \)},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {11},
     year = {2000},
     pages = {9-19},
     zbl = {0982.35078},
     mrnumber = {1797049},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_1_9_0}
}
Metafune, Giorgio; Pallara, Diego. Discreteness of the spectrum for some differential operators with unbounded coefficients in \( \mathbb{R}^{n} \). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 9-19. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_1_9_0/

[1] Da Prato, G. - Lunardi, A., On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | MR 1343161 | Zbl 0846.47004

[2] Da Prato, G. - Zabczyk, J., Ergodicity for infinite dimensional systems. Cambridge U. P., 1996. | MR 1417491 | Zbl 0849.60052

[3] Davies, E. B., Heat kernels and spectral theory. Cambridge U. P., 1989. | MR 990239 | Zbl 0699.35006

[4] Davies, E. B., Spectral theory and differential operators. Cambridge U. P., 1995. | MR 1349825 | Zbl 0893.47004

[5] Davies, E. B. - Simon, B., Ultracontractivity and the heat kernel for Schrödinger operators and Dirichlet laplacians. J. Funct. Anal., 59, 1984, 335-395. | MR 766493 | Zbl 0568.47034

[6] Davies, E. B. - Simon, B., L1 properties of intrinsic Schrödinger semigroups. J. Funct. Anal., 65, 1986, 126-146. | MR 819177 | Zbl 0613.47039

[7] Edmunds, D. E. - Evans, W. D., Spectral theory and differential operators. Oxford U.P., 1990. | Zbl 0664.47014

[8] Fefferman, C. L., The uncertainty principle. Bull. Am. Math. Soc., 9, 1983, 129-206. | MR 707957 | Zbl 0526.35080

[9] Kondrat'Ev, V. - Shubin, M., Discreteness of spectrum for the Schrödinger operators on manifolds with bounded geometry. preprint.

[10] Lunardi, A., Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in Rn. Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. | MR 1475774 | Zbl 0887.35062

[11] Lunardi, A., On the Ornstein-Uhlenbeck operator in L2 spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. | MR 1389786 | Zbl 0890.35030

[12] Lunardi, A. - Vespri, V., Generation of smoothing semigroups by elliptic operators with unbounded coefficients in Rn. Rend. Ist. Mat. Trieste, 28, 1997, 251-279. | MR 1602271 | Zbl 0899.35027

[13] Lunardi, A. - Vespri, V., Optimal L and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proc. Conf. Reaction-diffusion systems. Lecture notes in pure and applied mathematics, 194, M. Dekker, 1998, 217-239. | MR 1472521 | Zbl 0887.47034

[14] Metafune, G. - Pallara, D., Trace formulas for some singular differential operators and applications. Math. Nach., to appear. | MR 1743484 | Zbl 0961.34073

[15] Molcanov, A. M., Conditions for the discreteness of the spectrum of self-adjoint second-order differential equations. Trudy Moskov Mat. Obšč., 2, 1953, 169-200 (in Russian). | MR 57422

[16] Reed, M. - Simon, B., Methods of modern mathematical physics IV. Academic Press, 1978. | MR 751959 | Zbl 0401.47001

[17] Simon, B., Schrödinger semigroups. Bull. Am. Math. Soc., 7, 1982, 447-526. | Zbl 0524.35002

[18] Simon, B., Some quantum operators with discrete spectrum but classically continuous spectrum. Annals of Physics, 146, 1983, 209-220. | MR 701264 | Zbl 0547.35039