We show that the special linear group , over the integers, is not -generated. This gives a negative answer to a question of M. Conder.
Dimostriamo che il gruppo speciale lineare , sugli interi, non è -generato.
@article{RLIN_2000_9_11_1_5_0, author = {M. Chiara Tamburini and Paola Zucca}, title = {On a question of M. Conder}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {11}, year = {2000}, pages = {5-7}, zbl = {0983.20045}, mrnumber = {1797048}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_1_5_0} }
Tamburini, M. Chiara; Zucca, Paola. On a question of M. Conder. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 5-7. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_1_5_0/
[1] On non-Hurwitz groups. Glasgow Math. J., 22, 1981, 1-7. | MR 604811 | Zbl 0452.20049
,[2] On Hurwitz groups of low rank. To appear. | MR 1785508 | Zbl 0989.20040
- - ,[3] Uber eine Classe von arithmetisch definierbaren Normalteilern der Modulgruppe. Math. Ann., 235, 1978, 195-215. | MR 498891 | Zbl 0377.10014
,[4] Classical groups, probabilistic methods and the -generation problem. Ann. Math., 144, 1996, 77-125. | MR 1405944 | Zbl 0865.20020
- ,[5] -generated groups of large rank. Arch. Math. (Basel), 73, n. 4, 1999, 241-248. | MR 1710124 | Zbl 0944.20030
,[6] Classical groups of large rank as Hurwitz groups. J. Algebra, 219, 1999, 531-546. | MR 1706821 | Zbl 1063.20504
- ,[7] Hurwitz groups of large rank. To appear. | MR 1745399 | Zbl 0953.20024
- - ,[8] Unsolved Problems in Group Theory. 14° edition, The Kourovka Notebook, Novosibirsk 1999. | MR 1733915 | Zbl 0831.20003
- ,[9] On the groups generated by two operators. Bull. AMS, 7, 1901, 424-426. | JFM 32.0145.03 | MR 1557828
,[10] | MR 648604
, The Theory of Groups. Springer-Verlag1982.[11] On the -generation of some classical groups I. J. Algebra, 168, 1994, 353-370. | MR 1289105 | Zbl 0819.20053
- - ,[12] Simple images of triangle groups. Quart. J. Math. Oxford, Ser. (2), 50, n. 200, 1999, 523-531. | MR 1728423 | Zbl 0944.20032
,