In this paper integer cohomology rings of Artin groups associated with exceptional groups are determined. Computations have been carried out by using an effective method for calculation of cup product in cellular cohomology which we introduce here. Actually, our method works in general for any finite regular complex with identifications, the regular complex being geometrically realized by a compact orientable manifold, possibly with boundary.
In questo lavoro vengono determinati gli anelli di coomologia intera dei gruppi di Artin associati ai gruppi di Coxeter eccezionali. Una presentazione per tali anelli è ottenuta utilizzando un metodo effettivo, che introduciamo qui, per il calcolo del prodotto cup in coomologia cellulare. In generale mostriamo che tale metodo è applicabile ad ogni complesso cellulare finito e regolare, realizzato geometricamente da una varietà compatta e orientabile, eventualmente con bordo, su cui agisca una famiglia di identificazioni.
@article{RLIN_2000_9_11_1_41_0, author = {Claudia Landi}, title = {Cohomology rings of Artin groups}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {11}, year = {2000}, pages = {41-65}, zbl = {0966.55012}, mrnumber = {1797053}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_1_41_0} }
Landi, Claudia. Cohomology rings of Artin groups. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 41-65. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_1_41_0/
[1] On some topological invariants of algebraic functions. Trudy Mosk. Mat. Obshch., 21, 1970, 27-46. | MR 274462 | Zbl 0208.24003
,[2] | MR 647314 | Zbl 0483.22001
, Groupes et algèbres de Lie. Chap. 4-6. Masson-Paris1981.[3] Sur les groupes de tresses. Sém. Bourb. (1971/72) Lect. Notes in Math., 317, 1973, 21-44. | MR 422674 | Zbl 0277.55003
,[4] Multiplication on a complex. Annals of Mathematics, 37, 1936, 681-697. | JFM 62.0674.01 | MR 1503304 | Zbl 0015.13101
,[5] | MR 219059 | Zbl 0173.25701
- , Homology of cell complexes. Mathematical Notes, Princeton University Press 1967.[6] Cohomology of Artin groups. Math. Res. Letters, 3, 1996, 293-297. | MR 1386847 | Zbl 0870.57004
- ,[7] Arithmetic properties of the cohomology of braid groups. Topology, to appear. | MR 1851561 | Zbl 0999.20046
- - ,[8] Arithmetic properties of the cohomology of Artin groups. Ann. Scuola Norm. Sup. Pisa Sci. Fis. Mat., to appear. | Zbl 0973.20025
- - - ,[9] Les immeubles des groupes de tresses généralisés. Inv. Math., 17, 1972, 273-302. | MR 422673 | Zbl 0238.20034
,[10] Cohomologies of the group COS mod 2. Funkts Anal. Priloz., 4, 1970, 62-63. | Zbl 0222.57031
,[11] Cohomology of groups of braids of series C and D and certain stratifications. Funkts Anal. Priloz., 12, 1978, 138-140. | MR 498905 | Zbl 0409.20032
,[12] | MR 115161 | Zbl 0091.36306
- , Homology theory. Cambridge University Press 1960.[13] | MR 1066460 | Zbl 0768.20016
, Reflection groups and Coxeter groups. Cambridge University Press1990.[14] XII. American Mathematical Society, New-York1930. | JFM 56.0491.08
, Topology. Colloquium Publications, Volume[15] | Zbl 0205.27302
, Algebraic topology. London: Van Nostrand Reinhold Company1970.[16] The homotopy type of Artin groups. Math. Res. Letters, 1, 1994, 565-577. | MR 1295551 | Zbl 0847.55011
,[17] | MR 575168
- , A textbook of topology. Academic Press 1980.[18] Minimal length coset representatives for parabolic subgroups in Coxeter groups. preprint. | Zbl 1061.20037
,[19] Cohomologies of braid groups. Funkts Anal. Priloz., 12, 1978, 72-73. | MR 498903
,[20] 98, 1992. | MR 1168473 | Zbl 0762.55001
, Complements of discriminants of smooth maps. Trans. of Math. Monog.AMS,[21] On products on a complex. Annals of Mathematics, 39, 1938, 397-432. | JFM 64.1265.04 | MR 1503416 | Zbl 0019.14204
,