We shall prove an existence result for a class of quasilinear elliptic equations with natural growth. The model problem is
È provato un teorema di esistenza di soluzioni per una classe di equazioni ellittiche quasi-lineari, con coefficienti a crescite naturali (come suggerito dal Calcolo delle variazioni). Il problema modello è il seguente
@article{RLIN_2000_9_11_1_31_0, author = {Lucio Boccardo}, title = {Positive solutions for some quasilinear elliptic equations with natural growths}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {11}, year = {2000}, pages = {31-39}, zbl = {0970.35061}, mrnumber = {1797052}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_2000_9_11_1_31_0} }
Boccardo, Lucio. Positive solutions for some quasilinear elliptic equations with natural growths. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 11 (2000) pp. 31-39. http://gdmltest.u-ga.fr/item/RLIN_2000_9_11_1_31_0/
[1] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 22, 1995, 241-273. | MR 1354907 | Zbl 0866.35037
- - - - - ,[2] On a nonlinear partial differential equation having natural growth terms and unbounded solution. Ann. Inst. H. Poincaré Anal. Non Linéaire, 5, 1988, 347-364. | MR 963104 | Zbl 0696.35042
- - ,[3] Calcolo delle Variazioni. Roma 1 University PhD course, 1996.
,[4] Some nonlinear Dirichlet problems in involving lower order terms in divergence form. In: et al. (eds), Progress in elliptic and parabolic partial differential equations (Capri, 1994). Pitman Res. Notes Math. Ser., 350, Longman, Harlow 1996, 43-57. | MR 1430139 | Zbl 0889.35034
,[5] Strongly nonlinear elliptic equations having natural growth terms and data. Nonlinear Anal., 19, 1992, 573-579. | MR 1183664 | Zbl 0795.35031
- ,[6] Existence and nonexistence of solutions for some nonlinear elliptic equations. J. Anal. Math., 73, 1997, 203-223. | MR 1616410 | Zbl 0898.35035
- - ,[7] Existence de solutions non bornées pour certaines équations quasi-lineaires. Portugal. Math., 41, 1982, 507-534. | MR 766873 | Zbl 0524.35041
- - ,[8] estimate for some nonlinear elliptic partial differential equations and application to an existence result. SIAM J. Math. Anal., 23, 1992, 326-333. | MR 1147866 | Zbl 0785.35033
- - ,[9] Some properties of higher order Sobolev spaces. J. Math. Pures Appl., 61, 1982, 245-259. | MR 690395 | Zbl 0512.46034
- ,[10] Removable singularities for nonlinear elliptic equations. Topol. Methods Nonlinear Anal., 9, 1997, 201-219. | MR 1491843 | Zbl 0905.35027
- ,[11] 78. Springer-Verlag, Berlin-New York1989. | MR 990890 | Zbl 0703.49001
, Direct methods in the calculus of variations. Applied Mathematical Sciences,[12] Strongly nonlinear problems with Hamiltonian having natural growth. Houston J. Math., 16, 1990, 7-24. | MR 1071263 | Zbl 0714.35035
,[13] | Zbl 0189.40603
, Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris1969.[14] Some remarks on the regularity of solutions for a class of elliptic equations with measure data. Preprint, Dip. Mat. Roma 1. | MR 1814734 | Zbl 0974.35032
,[15] Existence for elliptic equations in having lower order terms with natural growth. Preprint, Dip. Mat. Roma 1. | MR 1759814 | Zbl 0963.35068
,