We prove existence of positive solutions for the equation on , arising in the prescribed scalar curvature problem. is the Laplace-Beltrami operator on , is the critical Sobolev exponent, and is a small parameter. The problem can be reduced to a finite dimensional study which is performed with Morse theory.
Si dimostra l’esistenza di soluzioni positive per l’equazione su , che nasce del problema della curvatura scalare prescritta. è l’operatore di Laplace-Beltrami su , è l’esponente critico di Sobolev, ed un parametro piccolo. Il problema si riduce a uno studio finito-dimensionale che è affrontato con la teoria di Morse.
@article{RLIN_1999_9_10_4_267_0, author = {Andrea Malchiodi}, title = {Some existence results for the scalar curvature problem via Morse theory}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {10}, year = {1999}, pages = {267-270}, zbl = {1021.53022}, mrnumber = {1767933}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_4_267_0} }
Malchiodi, Andrea. Some existence results for the scalar curvature problem via Morse theory. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 267-270. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_4_267_0/
[1] Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré Analyse Non Linéaire, 15, 1998, 233-252; Preliminary note on C. R. Acad. Sci. Paris, 323, Série I, 1996, 753-758. | MR 1416171 | Zbl 1004.37043
- ,[2] Perturbation of , the Scalar Curvature Problem in and related topics. J. Funct. Anal., to appear. | MR 1696454 | Zbl 0938.35056
- - ,[3] The scalar curvature problem on the standard three dimensional sphere. J. Funct. Anal., 95, 1991, 106-172. | MR 1087949 | Zbl 0722.53032
- ,[4] The scalar curvature equation on and on . Adv. Diff. Eq., 1, 1996, 857-880. | MR 1392008 | Zbl 0865.35044
,[5] Prescribing scalar curvature on . Acta Math., 159, 1987, 215-229. | MR 908146 | Zbl 0636.53053
- ,[6] Conformal deformation of metrics on . J. Diff. Geom., 27, 1988, 259-296. | MR 925123 | Zbl 0649.53022
- ,[7] A perturbation result in prescribing scalar curvature on . Duke Math. J., 64 (1), 1991, 27-69. | MR 1131392 | Zbl 0739.53027
- ,[8] | MR 1196690 | Zbl 0779.58005
, Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, 1993.[9] On Nirenberg’s problem. Int. J. Math., 4, 1993, 35-58. | MR 1209959 | Zbl 0786.58010
- ,[10] Scalar curvature on . Trans. Amer. Math. Soc., 303, 1987, 365-382. | Zbl 0635.35026
- ,[11] Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. of Math., 101, 1971, 317-331. | MR 375153 | Zbl 0297.53020
- ,[12] Prescribing scalar curvature on and related topics, Part 1. J. Diff. Equat., 120, 1995, 319-410. | MR 1347349 | Zbl 0827.53039
,[13] Prescribing scalar curvature on and related topics, Part 2, Existence and compactness. Comm. Pure Appl. Math., 49, 1996, 437-477. | MR 1383201 | Zbl 0849.53031
,[14] The Scalar Curvature Problem on : an approach via Morse Theory. Preprint SISSA. | MR 1911824 | Zbl 1012.53035
,[15] Prescribed scalar curvature on the -sphere. Calc. Var., 4, 1996, 1-25. | MR 1379191 | Zbl 0843.53037
- ,