Simmetria delle soluzioni di equazioni ellittiche semilineari in RN
Farina, Alberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999), p. 255-265 / Harvested from Biblioteca Digitale Italiana di Matematica

Nella prima parte di questa Nota si dimostrano dei risultati di simmetria unidimensionale e radiale per le soluzioni di Δu+fu=0 in RN. Questi risultati sono legati a due congetture (De Giorgi, 1978 e Gibbons, 1994) riguardanti la classificazione delle soluzioni dell’equazione Δu+u1-u2=0 in RN. Si dimostra, in particolare, la seguente generalizzazione della congettura di Gibbons: se N>1 e se l’insieme degli zeri di u è limitato nella direzione ν, allora ux=u0νx, ovvero, u è unidimensionale. Nella seconda parte si considerano le equazioni di reazione-convezione-diffusione del tipo aijxθiju+bixθiu+fx,u=0 in RN e si dimostrano dei risultati di monotonia e simmetria che, una volta combinati, conducono ad un’altra generalizzazione della congettura di Gibbons.

In the first part of this Note we prove one-dimensional and radial symmetry results for solutions of Δu+fu=0 in Simmetria delle soluzioni di equazioni ellittiche semilineari in RN . These results are connected with two conjectures (De Giorgi, 1978 and Gibbons, 1994) about the classification of solutions of the equation Δu+u1-u2=0 in RN. In particular we prove a stronger version of Gibbons' conjecture in any dimension N>1, namely: if the set of zeros of u is bounded with respect to one direction, say ν , then u is one-dimensional, i.e., ux=u0νx. In the second part we consider the reaction-convection-diffusion equations of type aijxθiju+bixθiu+fx,u=0 in RN and prove monotonicity and symmetry results which, when combined, lead to another stronger version of Gibbons’s conjecture in any dimension.

Publié le : 1999-12-01
@article{RLIN_1999_9_10_4_255_0,
     author = {Alberto Farina},
     title = {Simmetria delle soluzioni di equazioni ellittiche semilineari in \( \mathbb{R}^{N} \)},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {10},
     year = {1999},
     pages = {255-265},
     zbl = {1160.35401},
     mrnumber = {1767932},
     language = {it},
     url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_4_255_0}
}
Farina, Alberto. Simmetria delle soluzioni di equazioni ellittiche semilineari in \( \mathbb{R}^{N} \). Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 255-265. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_4_255_0/

[1] Barlow, M. T., On the Liouville property for divergence form operators. Canadian J. Math., 50, 1998, 487-496. | MR 1629807 | Zbl 0912.31004

[2] Barlow, M. T. - Bass, R. F. - Gui, C., The Liouville property and a conjecture of De Giorgi. Preprint. | MR 1755949 | Zbl 1072.35526

[3] Berestycki, H. - Caffarelli, L. - Nirenberg, L., Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Commun. Pure Appl. Math., 50, 1997, 1089-1111. | MR 1470317 | Zbl 0906.35035

[4] Berestycki, H. - Caffarelli, L. - Nirenberg, L., Further Qualitative Properties for Elliptic Equations in Unbounded Domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (4), 1997, 69-94. | MR 1655510 | Zbl 1079.35513

[5] Berestycki, H. - Hamel, F. - Monneau, R., One-dimensional symmetry for some bounded entire solutions of some elliptic equations. Preprint, 1999. | Zbl 0954.35056

[6] Caffarelli, L. - Garofalo, N. - Segala, F., A Gradient Bound for Entire Solutions of Quasi-Linear Equations and its Consequences. Commun. Pure Appl. Math., 47, 1994, 1457-1473. | MR 1296785 | Zbl 0819.35016

[7] Carbou, G., Unicité et minimalité des solutions d’une équation the Ginzburg-Landau. Ann. Inst. H. Poincaré, Analyse non linéaire, 12 (3), 1995, 305-318. | MR 1340266 | Zbl 0835.35045

[8] De Giorgi, E., Convergence Problems for Functionals and Operators. In: E. De Giorgi - E. Magenes - U. Mosco (eds.), Proceedings of the Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978). Pitagora, Bologna 1979, 131-188. | MR 533166 | Zbl 0405.49001

[9] Farina, A., Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in RK. C.R. Acad. Sci. Paris, t. 325, Série I, 1997, 487-491. | MR 1692312 | Zbl 0885.35032

[10] Farina, A., Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in RK. Differential and Integral Equations, vol. 11, 6, 1998, 875-893. | MR 1659256 | Zbl 1074.35504

[11] Farina, A., Some remarks on a conjecture of De Giorgi. Calc. Var. Part. Diff. Eq., 8, 1999, 3, 233-245. | MR 1688549 | Zbl 0938.35057

[12] Farina, A., Symmetry for solutions of semilinear elliptic equations in RN and related conjectures. Ricerche di Matematica: special issue in memory of E. De Giorgi, XLVIII, 1999, 129-154. | MR 1765681 | Zbl 0940.35084

[13] Ghoussoub, N. - Gui, C., On a conjecture of De Giorgi and some related problems. Math. Annalen, 311, 1998, 481-491. | MR 1637919 | Zbl 0918.35046

[14] Kolmogorov, A. N. - Petrovsky, I. G. - Piskunov, N. S., Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Etat Moscou, Série Int. Sect. A, Math. et Mecan., 1, 1937, 1-25. (English translation: Study of the Diffusion Equation with Growth of the Quantity of Matter and its Application to a Biology Problem. In: R. Pelcé (ed.), Dynamics of curved fronts. Perspectives in Physics Series, Academic Press, New York 1988, 105-130). | Zbl 0018.32106

[15] Li, Y. - Ni, W.-M., Radial Symmetry of Positive Solutions of Nonlinear Elliptic Equations in RN. Comm. Part. Diff. Eq., 18, 1993, 1043-1054. | MR 1218528 | Zbl 0788.35042

[16] Modica, L., A Gradient Bound and a Liouville Theorem for Nonlinear Poisson Equations. Commun. Pure Appl. Math., 38, 1985, 679-684. | MR 803255 | Zbl 0612.35051

[17] Modica, L. - Mortola, S., Some Entire Solutions in the Plane of Nonlinear Poisson Equations. Boll. Un. Mat. Ital., 17-B, 1980, 614-622. | MR 580544 | Zbl 0448.35044