The existence of mean periodic functions in the sense of L. Schwartz, generated, in various ways, by an equicontinuous group or an equicontinuous cosine function forces the spectral structure of the infinitesimal generator of or . In particular, it is proved under fairly general hypotheses that the spectrum has no accumulation point and that the continuous spectrum is empty.
Si dimostra che l’esistenza di funzioni medio-periodiche nel senso di L. Schwartz, generate, in diversi modi, da un gruppo o da una funzione coseno equicontinui condiziona la struttura dello spettro del generatore infinitesimale di e di . In particolare, si dimostra sotto ipotesi piuttosto generali che lo spettro è privo di punti di accumulazione e che lo spettro continuo è vuoto.
@article{RLIN_1999_9_10_3_141_0, author = {Valentina Casarino}, title = {Equicontinuous families of operators generating mean periodic maps}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {10}, year = {1999}, pages = {141-171}, zbl = {1026.47505}, mrnumber = {1769161}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_3_141_0} }
Casarino, Valentina. Equicontinuous families of operators generating mean periodic maps. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 141-171. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_3_141_0/
[1] Almost periodic solutions of first and second order Cauchy problems. J. Diff. Eq., 137, 1997, 363-383. | MR 1456602 | Zbl 0879.34046
- ,[2] 1184, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo 1986. | MR 839450
- - - - - - - - , One-parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, n.[3] A theorem on functions defined on semigroups. Math. Scand., 1, 1953, 127-130. | MR 57467 | Zbl 0050.33701
,[4] | MR 20163 | Zbl 0278.42019
, Almost periodic functions. Chelsea, New York1947.[5] | MR 14165 | Zbl 0060.25504
, L’integrale de Fourier et questions qui s’y rattachent. Almqvist and Wiksell, Uppsala1944.[6] Quasi-periodicità e uniforme continuità di semigruppi e funzioni coseno: criteri spettrali. Doctoral Dissertation, Politecnico di Torino1998.
,[7] Spectral properties of weakly almost periodic cosine functions. Rend. Mat. Acc. Lincei, s. 9, vol. 9, 1998, 177-211. | MR 1683008 | Zbl 0944.47027
,[8] Les fonctions moyenne-périodiques. Journal de Mathématiques pures et appliquées, 14, 1935, 403-453. | JFM 61.1185.02 | Zbl 0013.25405
,[9] Ordinary differential equations in linear topological spaces I. J. Differential Equations, 5, 1969, 72-105. | MR 277860 | Zbl 0175.15101
,[10] Ordinary differential equations in linear topological spaces II. J. Differential Equations, 6, 1969, 50-70. | MR 277861 | Zbl 0181.42801
,[11] Sur quelques problèmes d’unicité et de prolongement, relatifs aux fonctions approchables par des sommes d’exponentielles. Annales de l’Institut Fourier, 5, 1954, 39-130. | MR 75350 | Zbl 0064.35903
,[12] Sur les fonctions moyenne-périodiques bornées. Annales de l’Institut Fourier, 7, 1957, 293-314. | MR 102702 | Zbl 0083.34401
,[13] Lectures on mean periodic functions. Tata Institut for fundamental Research, Bombay1958. | Zbl 0099.32301
,[14] | MR 248482 | Zbl 0169.17902
, An introduction to Harmonic Analysis. John Wiley & Sons, New York - London - Sydney - Toronto1968.[15] | MR 166578 | Zbl 0318.46001
- , Linear topological spaces. Springer-Verlag, New York - Heidelberg - Berlin 1963.[16] On functions which are mean periodic on a half-line. Comm. Pure and Appl. Math., 10, 1957, 133-149. | MR 89297 | Zbl 0077.10302
,[17] On cosine operator functions in Banach spaces. Acta Sci. Math. (Szeged), 36, 1974, 281-290. | MR 374995 | Zbl 0273.47008
,[18] | MR 1222650 | Zbl 0780.47026
, The adjoint of a semigroup of linear operators. Springer-Verlag, Berlin - Heidelberg - New York - Tokyo1992.[19] | MR 1409370 | Zbl 0905.47001
, The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel1996.[20] | MR 710486 | Zbl 0516.47023
, Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York - Berlin - Heidelberg - Tokyo1983.[21] Theorie générale des fonctions moyenne-périodiques. Annals of Mathematics, 48, 1947, 857-929. | MR 23948 | Zbl 0030.15004
,[22] XLIX, Warszawa1966. | MR 193525 | Zbl 0156.15404
, Cosine operator functions. Rozprawy Matematyczne,[23] | MR 1736550 | Zbl 1068.47001
, Introduction to continuous semigroups. Scuola Normale Superiore, Pisa1996.[24] Spectral properties of weakly asymptotically almost periodic semigroups. Advances in Math., 128, 1997, 217-241. | MR 1454398 | Zbl 0882.22002
, , Functional Analysis. Springer Verlag, Berlin - Heidelberg - New York1968.