Equicontinuous families of operators generating mean periodic maps
Casarino, Valentina
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999), p. 141-171 / Harvested from Biblioteca Digitale Italiana di Matematica

The existence of mean periodic functions in the sense of L. Schwartz, generated, in various ways, by an equicontinuous group U or an equicontinuous cosine function C forces the spectral structure of the infinitesimal generator of U or C. In particular, it is proved under fairly general hypotheses that the spectrum has no accumulation point and that the continuous spectrum is empty.

Si dimostra che l’esistenza di funzioni medio-periodiche nel senso di L. Schwartz, generate, in diversi modi, da un gruppo U o da una funzione coseno C equicontinui condiziona la struttura dello spettro del generatore infinitesimale di U e di C. In particolare, si dimostra sotto ipotesi piuttosto generali che lo spettro è privo di punti di accumulazione e che lo spettro continuo è vuoto.

Publié le : 1999-09-01
@article{RLIN_1999_9_10_3_141_0,
     author = {Valentina Casarino},
     title = {Equicontinuous families of operators generating mean periodic maps},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {10},
     year = {1999},
     pages = {141-171},
     zbl = {1026.47505},
     mrnumber = {1769161},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_3_141_0}
}
Casarino, Valentina. Equicontinuous families of operators generating mean periodic maps. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 141-171. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_3_141_0/

[1] Arendt, W. - Batty, C.J.K., Almost periodic solutions of first and second order Cauchy problems. J. Diff. Eq., 137, 1997, 363-383. | MR 1456602 | Zbl 0879.34046

[2] Arendt, W. - Grabosch, A. - Greiner, G. - Groh, U. - Lotz, H.P. - Moustakas, U. - Nagel, R. - Neubrander, F. - Schlotterbeck, U., One-parameter Semigroups of Positive Operators. Lecture Notes in Mathematics, n. 1184, Springer-Verlag, Berlin - Heidelberg - New York - Tokyo 1986. | MR 839450

[3] Beurling, A., A theorem on functions defined on semigroups. Math. Scand., 1, 1953, 127-130. | MR 57467 | Zbl 0050.33701

[4] Bohr, H., Almost periodic functions. Chelsea, New York1947. | MR 20163 | Zbl 0278.42019

[5] Carleman, T., L’integrale de Fourier et questions qui s’y rattachent. Almqvist and Wiksell, Uppsala1944. | MR 14165 | Zbl 0060.25504

[6] Casarino, V., Quasi-periodicità e uniforme continuità di semigruppi e funzioni coseno: criteri spettrali. Doctoral Dissertation, Politecnico di Torino1998.

[7] Casarino, V., Spectral properties of weakly almost periodic cosine functions. Rend. Mat. Acc. Lincei, s. 9, vol. 9, 1998, 177-211. | MR 1683008 | Zbl 0944.47027

[8] Delsarte, J., Les fonctions moyenne-périodiques. Journal de Mathématiques pures et appliquées, 14, 1935, 403-453. | JFM 61.1185.02 | Zbl 0013.25405

[9] Fattorini, H., Ordinary differential equations in linear topological spaces I. J. Differential Equations, 5, 1969, 72-105. | MR 277860 | Zbl 0175.15101

[10] Fattorini, H., Ordinary differential equations in linear topological spaces II. J. Differential Equations, 6, 1969, 50-70. | MR 277861 | Zbl 0181.42801

[11] Kahane, J.P., Sur quelques problèmes d’unicité et de prolongement, relatifs aux fonctions approchables par des sommes d’exponentielles. Annales de l’Institut Fourier, 5, 1954, 39-130. | MR 75350 | Zbl 0064.35903

[12] Kahane, J.P., Sur les fonctions moyenne-périodiques bornées. Annales de l’Institut Fourier, 7, 1957, 293-314. | MR 102702 | Zbl 0083.34401

[13] Kahane, J.P., Lectures on mean periodic functions. Tata Institut for fundamental Research, Bombay1958. | Zbl 0099.32301

[14] Katznelson, Y., An introduction to Harmonic Analysis. John Wiley & Sons, New York - London - Sydney - Toronto1968. | MR 248482 | Zbl 0169.17902

[15] Kelley, J.L. - Namioka, I., Linear topological spaces. Springer-Verlag, New York - Heidelberg - Berlin 1963. | MR 166578 | Zbl 0318.46001

[16] Koosis, P., On functions which are mean periodic on a half-line. Comm. Pure and Appl. Math., 10, 1957, 133-149. | MR 89297 | Zbl 0077.10302

[17] Nagy, B., On cosine operator functions in Banach spaces. Acta Sci. Math. (Szeged), 36, 1974, 281-290. | MR 374995 | Zbl 0273.47008

[18] Van Neerven, J.M.A.M., The adjoint of a semigroup of linear operators. Springer-Verlag, Berlin - Heidelberg - New York - Tokyo1992. | MR 1222650 | Zbl 0780.47026

[19] Van Neerven, J.M.A.M., The Asymptotic Behaviour of Semigroups of Linear Operators. Birkhäuser Verlag, Basel1996. | MR 1409370 | Zbl 0905.47001

[20] Pazy, A., Semigroups of linear operators and applications to partial differential equations. Springer-Verlag, New York - Berlin - Heidelberg - Tokyo1983. | MR 710486 | Zbl 0516.47023

[21] Schwartz, L., Theorie générale des fonctions moyenne-périodiques. Annals of Mathematics, 48, 1947, 857-929. | MR 23948 | Zbl 0030.15004

[22] Sova, M., Cosine operator functions. Rozprawy Matematyczne, XLIX, Warszawa1966. | MR 193525 | Zbl 0156.15404

[23] Vesentini, E., Introduction to continuous semigroups. Scuola Normale Superiore, Pisa1996. | MR 1736550 | Zbl 1068.47001

[24] Vesentini, E., Spectral properties of weakly asymptotically almost periodic semigroups. Advances in Math., 128, 1997, 217-241. | MR 1454398 | Zbl 0882.22002

[25] Yosida, K., Functional Analysis. Springer Verlag, Berlin - Heidelberg - New York1968. | MR 239384 | Zbl 0435.46002