A rather general class of stochastic evolution equations in Hilbert spaces whose transition semigroups are Feller with respect to the weak topology is found, and consequences for existence of invariant measures are discussed.
Viene presentata un’ampia classe di equazioni di evoluzione stocastiche in spazi di Hilbert i cui semigruppi di transizione hanno la proprietà di Feller rispetto alla topologia debole; vengono inoltre discusse alcune conseguenze per l’esistenza di misure invarianti.
@article{RLIN_1999_9_10_2_69_0, author = {Bohdan Maslowski and Jan Seidler}, title = {On sequentially weakly Feller solutions to SPDE's}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {10}, year = {1999}, pages = {69-78}, zbl = {1007.60067}, mrnumber = {1768191}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_2_69_0} }
Maslowski, Bohdan; Seidler, Jan. On sequentially weakly Feller solutions to SPDE’s. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 69-78. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_2_69_0/
[1] Martingale solutions and invariant measures for stochastic evolution equations in Banach spaces. The University of Hull, Mathematics Research Reports, 11, 1998, no. 2. | Zbl 0996.60074
- ,[2] 8, Springer-Verlag, Berlin 1978. | MR 516812 | Zbl 0389.93001
- , Infinite dimensional linear systems theory. Lecture Notes in Control and Inform. Sci.,[3] Invariant measures for semilinear stochastic equations. Stochastic Anal. Appl., 10, 1992, 387-408. | MR 1178482 | Zbl 0758.60057
- - ,[4] | MR 1207136 | Zbl 1140.60034
- , Stochastic equations in infinite dimensions. Cambridge University Press, Cambridge 1992.[5] | MR 1417491 | Zbl 0849.60052
- , Ergodicity for infinite dimensional systems. Cambridge University Press, Cambridge 1996.[6] Dynamic programming approach to stochastic evolution equations. SIAM J. Control Optim., 17, 1979, 152-174. | MR 516862 | Zbl 0434.93069
,[7] Semilinear stochastic evolution equations: Boundedness, stability and invariant measures. Stochastics, 12, 1984, 1-39. | MR 738933 | Zbl 0538.60068
,[8] Convergence in distribution of stochastic processes. Univ. Calif. Publ. Statist., 2, 1957, 207-236. | MR 86117 | Zbl 0077.12301
,[9] Lyapunov-type conditions for stationary distributions of diffusion processes on Hilbert spaces. Stochastics Stochastics Rep., 48, 1994, 195-225. | MR 1782748 | Zbl 0828.60063
- ,[10] On Nemytskii’s operator and its application to the lower semicontinuity of integral functionals. Indiana Univ. Math. J., 29, 1980, 703-713. | MR 589437 | Zbl 0476.47049
- ,[11] Probabilistic approach to the strong Feller property. To appear. | MR 1790081 | Zbl 0966.60076
- ,[12] An averaging principle for stochastic evolution equations. Časopis Pěst. Mat., 115, 1990, 240-263. | MR 1071056 | Zbl 0718.60068
- ,[13] A dynamical system in a Hilbert space with a weakly attractive nonstationary point. Math. Bohem., 118, 1993, 401-423. | MR 1251884 | Zbl 0794.34054
,[14] On optimal stochastic control of discrete-time systems in Hilbert space. SIAM J. Control, 13, 1975, 1217-1234. | MR 384291 | Zbl 0313.93067
,