A computational approach to fractures in crystal growth
Novaga, Matteo ; Paolini, Emanuele
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999), p. 47-56 / Harvested from Biblioteca Digitale Italiana di Matematica

In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.

In questo lavoro, presentiamo e discutiamo un approccio numerico al problema di individuare la nascita di fratture in una faccia di un cristallo che si evolve per curvatura media anisotropa. I risultati sono in accordo con gli esempi noti fino ad ora di frattura di facce. Sono inoltre incluse alcune simulazioni grafiche.

Publié le : 1999-03-01
@article{RLIN_1999_9_10_1_47_0,
     author = {Matteo Novaga and Emanuele Paolini},
     title = {A computational approach to fractures in crystal growth},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {10},
     year = {1999},
     pages = {47-56},
     zbl = {1042.74041},
     mrnumber = {1768520},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_1_47_0}
}
Novaga, Matteo; Paolini, Emanuele. A computational approach to fractures in crystal growth. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 47-56. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_1_47_0/

[1] Almgren, F. J. - Taylor, J., Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom., 42, 1995, 1-22. | MR 1350693 | Zbl 0867.58020

[2] Almgren, F. J. - Taylor, J. E. - Wang, L., Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | MR 1205983 | Zbl 0783.35002

[3] Bellettini, G. - Novaga, M., Approximation and comparison for non-smooth anisotropic motion by mean curvature in RN. Math. Mod. Meth. Appl. Sc., to appear. | MR 1749692 | Zbl 1016.53048

[4] Bellettini, G. - Novaga, M. - Paolini, M., Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces and Free Boundaries, to appear. | MR 1865105 | Zbl 0934.49023

[5] Bellettini, G. - Paolini, M. - Venturini, S., Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl., 170, 1996, 329-359. | MR 1441625 | Zbl 0890.49020

[6] Brezis, H., Operateurs Maximaux Monotones. North-Holland, Amsterdam1973.

[7] Cahn, J. W. - Handwerker, C. A. - Taylor, J. E., Geometric models of crystal growth. Acta Metall. Mater., 40, 1992, 1443-1474.

[8] Giga, M.-H. - Giga, Y., A subdifferential interpretation of crystalline motion under nonuniform driving force. Dynamical Systems and Differential Equations, 1, 1998, 276-287. | MR 1720610

[9] Giga, Y. - Gurtin, M. E. - Matias, J., On the dynamics of crystalline motion. Japan Journal of Industrial and Applied Mathematics, 15, 1998, 7-50. | MR 1610305

[10] Taylor, J. E., Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.), 84, 1978, 568-588. | MR 493671 | Zbl 0392.49022

[11] Taylor, J. E., Geometric crystal growth in 3D via facetted interfaces. In: Computational Crystal Growers Workshop. Selected Lectures in Mathematics, Amer. Math. Soc., 1992, 111-113. | MR 1224451 | Zbl 0776.65002

[12] Taylor, J. E., Mean curvature and weighted mean curvature. Acta Metall. Mater., 40, 1992, 1475-1485.

[13] Yunger, J., Facet Stepping and Motion By Crystalline Curvature. Ph. D. Thesis, 1998. | MR 2698605