In the present paper, we motivate and describe a numerical approach in order to detect the creation of fractures in a facet of a crystal evolving by anisotropic mean curvature. The result appears to be in accordance with the known examples of facet-breaking. Graphical simulations are included.
In questo lavoro, presentiamo e discutiamo un approccio numerico al problema di individuare la nascita di fratture in una faccia di un cristallo che si evolve per curvatura media anisotropa. I risultati sono in accordo con gli esempi noti fino ad ora di frattura di facce. Sono inoltre incluse alcune simulazioni grafiche.
@article{RLIN_1999_9_10_1_47_0, author = {Matteo Novaga and Emanuele Paolini}, title = {A computational approach to fractures in crystal growth}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {10}, year = {1999}, pages = {47-56}, zbl = {1042.74041}, mrnumber = {1768520}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_1_47_0} }
Novaga, Matteo; Paolini, Emanuele. A computational approach to fractures in crystal growth. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 47-56. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_1_47_0/
[1] Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Diff. Geom., 42, 1995, 1-22. | MR 1350693 | Zbl 0867.58020
- ,[2] Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | MR 1205983 | Zbl 0783.35002
- - ,[3] Approximation and comparison for non-smooth anisotropic motion by mean curvature in . Math. Mod. Meth. Appl. Sc., to appear. | MR 1749692 | Zbl 1016.53048
- ,[4] Facet-breaking for three-dimensional crystals evolving by mean curvature. Interfaces and Free Boundaries, to appear. | MR 1865105 | Zbl 0934.49023
- - ,[5] Some results on surface measures in Calculus of Variations. Ann. Mat. Pura Appl., 170, 1996, 329-359. | MR 1441625 | Zbl 0890.49020
- - ,[6]
, Operateurs Maximaux Monotones. North-Holland, Amsterdam1973.[7] Geometric models of crystal growth. Acta Metall. Mater., 40, 1992, 1443-1474.
- - ,[8] A subdifferential interpretation of crystalline motion under nonuniform driving force. Dynamical Systems and Differential Equations, 1, 1998, 276-287. | MR 1720610
- ,[9] On the dynamics of crystalline motion. Japan Journal of Industrial and Applied Mathematics, 15, 1998, 7-50. | MR 1610305
- - ,[10] Crystalline variational problems. Bull. Amer. Math. Soc. (N.S.), 84, 1978, 568-588. | MR 493671 | Zbl 0392.49022
,[11] Geometric crystal growth in 3D via facetted interfaces. In: Computational Crystal Growers Workshop. Selected Lectures in Mathematics, Amer. Math. Soc., 1992, 111-113. | MR 1224451 | Zbl 0776.65002
,[12] Mean curvature and weighted mean curvature. Acta Metall. Mater., 40, 1992, 1475-1485.
,[13] Facet Stepping and Motion By Crystalline Curvature. Ph. D. Thesis, 1998. | MR 2698605
,