Using interpolation techniques we prove an optimal regularity theorem for the convolution , where is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in , , in which case it yields new optimal regularity results in fractional Sobolev spaces.
Usando tecniche di interpolazione si dimostra un teorema di regolarità ottimale per la convoluzione , dove è un semigruppo fortemente continuo in uno spazio di Banach qualunque. Nel caso dei problemi parabolici astratti – cioè quando è un semigruppo analitico – esso permette di ritrovare in modo unificato risultati di regolarità già noti. Il teorema può essere applicato anche nel caso di alcuni semigruppi non analitici, come ad esempio la realizzazione del semigruppo di Ornstein-Uhlenbeck in , , per il quale dà nuovi risultati di regolarità ottimale in spazi di Sobolev frazionari.
@article{RLIN_1999_9_10_1_25_0, author = {Alessandra Lunardi}, title = {On optimal \( L^{p} \) regularity in evolution equations}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {10}, year = {1999}, pages = {25-34}, zbl = {1023.47023}, mrnumber = {1768518}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_1_25_0} }
Lunardi, Alessandra. On optimal \( L^{p} \) regularity in evolution equations. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 25-34. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_1_25_0/
[1] On the eigenfunctions and the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 1962, 119-147. | MR 147774 | Zbl 0109.32701
,[2] Elliptic and parabolic equations in with coefficients having polynomial growth. Comm. Part. Diff. Eqns., 21, 1996, 281-317. | MR 1373775 | Zbl 0851.35049
,[3] Some results for second order elliptic operators having unbounded coefficients. Diff. Int. Eqns., to appear. | MR 1666273 | Zbl 1131.35393
,[4] Some results on elliptic and parabolic equations in Hilbert spaces. Rend. Mat. Acc. Lincei, s.9, v.7, 1996, 181-199. | MR 1454413 | Zbl 0881.47018
,[5] Sommes d’opérateurs linéaires et équations différentielles opérationelles. J. Maths. Pures Appliquées, 54, 1975, 305-387. | MR 442749 | Zbl 0315.47009
- ,[6] On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | MR 1343161 | Zbl 0846.47004
- ,[7] Linear parabolic evolution equations in spaces. Ann. Mat. Pura Appl., 138, 1984, 55-104. | MR 779538 | Zbl 0568.35047
,[8] Holomorphic semigroups in interpolation and extrapolation spaces. Semigroup Forum, 47, 1993, 105-114. | MR 1218138 | Zbl 0816.47044
,[9] Limiting case for interpolation spaces generated by holomorphic semigroups. Semigroup Forum, to appear. | MR 1640871 | Zbl 0941.47035
,[10] On the closedness of the sum of two closed operators. Math. Z., 196, 1987, 189-201. | MR 910825 | Zbl 0615.47002
- ,[11] Equations différentielles abstraites. Ann. Scient. Ec. Norm. Sup., 2, 1969, 311-395. | MR 270209 | Zbl 0193.43502
,[12] On elliptic systems in . Osaka J. Math., 30, 1993, 397-429. | MR 1240004 | Zbl 0797.35037
,[13] On interpolation with boundary conditions. Math. Z., 207, 1991, 439-460. | MR 1115176 | Zbl 0713.46048
,[14] | Zbl 0634.26008
- - , Inequalities. Cambridge Univ. Press, Cambridge 1934.[15] Counterexamples on -maximal regularity. Preprint Éq. Math. Besançon 1997.
,[16] | MR 3012216 | Zbl 1261.35001
, Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser Verlag, Basel1995.[17] An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, 53, 1996, 321-329. | MR 1406778 | Zbl 0859.47030
,[18] On the Ornstein-Uhlenbeck operator in spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. | MR 1389786 | Zbl 0890.35030
,[19] Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in . Studia Math., 128, 1988, 171-198. | MR 1490820 | Zbl 0899.35014
,[20] Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in . Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. | MR 1475774 | Zbl 0887.35062
,[21] Optimal and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: - (eds.), Proceedings of the Conference on Reaction-Diffusion Systems. Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York 1998, 217-239. | MR 1472521 | Zbl 0887.47034
- ,[22] Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in . Rend. Istit. Mat. Univ. Trieste, (Special issue dedicated to the memory of Pierre Grisvard), 28, 1997, 251-279. | MR 1602271 | Zbl 0899.35027
- , , Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam1978.