We prove an existence and uniqueness theorem for the Dirichlet problem for the equation in an open cube , when belongs to some , with close to 2. Here we assume that the coefficient belongs to the space BMO() of functions of bounded mean oscillation and verifies the condition for a.e. .
Si prova un teorema di esistenza ed unicità per il problema di Dirichlet per l’equazione in un cubo aperto , dove appartiene a , con vicino a 2. Si assume che il coefficiente appartenga allo spazio BMO() delle funzioni ad oscillazione media limitata e verifichi la condizione per q.o. .
@article{RLIN_1999_9_10_1_17_0, author = {Menita Carozza and Gioconda Moscariello and Antonia Passarelli di Napoli}, title = {Linear elliptic equations with BMO coefficients}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {10}, year = {1999}, pages = {17-23}, zbl = {1042.35009}, mrnumber = {1768517}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_1_17_0} }
Carozza, Menita; Moscariello, Gioconda; Passarelli di Napoli, Antonia. Linear elliptic equations with BMO coefficients. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 17-23. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_1_17_0/
[1] Degree theory and BMO; Part I: Compact manifolds with boundary. Selecta Math., 1 (2), 1995, 197-263. | MR 1354598 | Zbl 0852.58010
- ,[2] Compensated compactness and Hardy spaces. J. Math. Pures Appl., 1993, 247-286. | MR 1225511 | Zbl 0864.42009
- - - ,[3] Existence and uniqueness results of nonlinear equations with right hand side in . Studia Math., 127 (3), 1998, 223-231. | MR 1489454 | Zbl 0891.35039
- ,[4] Weak minima of variational integrals. J. Reine Angew. Math., 454, 1994, 143-161. | MR 1288682 | Zbl 0802.35016
- ,[5] A study of Jacobians in Hardy-Orlicz spaces. Proc. Royal Soc. of Edinburgh, to appear. | Zbl 0954.46018
- ,[6] An -estimate for the gradient of solutions of second order elliptic divergence equations. Ann. Sc. Norm. Pisa, 17, 1963, 189-206. | MR 159110 | Zbl 0127.31904
,[7] spaces over open subset of . Studia Math., XCV, 1990, 204-228. | MR 1060724 | Zbl 0716.42017
,[8] Compacité par compensation. Ann. Sc. Normale Sup. Pisa, 5, 1978, 489-507. | MR 506997 | Zbl 0399.46022
,[9] Compensated compactness and applications to partial differential equations in Nonlinear Analysis and Mechanics. Heriot Watt Symposium, Research Notes in Math., Pitman, London, 39, 1979, 136-212. | MR 584398 | Zbl 0437.35004
,