In this paper we characterize certain classes of groups in which, from (, a fixed prime), it follows that . Our results extend results previously obtained by other authors, in the finite case.
In questa Nota si caratterizzano alcune classi di gruppi tali che da (, primo fissato), segue . In particolare si estendono risultati precedentemente ottenuti da altri autori, nel caso finito.
@article{RLIN_1999_9_10_1_11_0, author = {Patrizia Longobardi and Mercede Maj}, title = {Some remarks on groups in which elements with the same \( p \)-power commute}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {10}, year = {1999}, pages = {11-15}, zbl = {1008.20022}, mrnumber = {1768516}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1999_9_10_1_11_0} }
Longobardi, Patrizia; Maj, Mercede. Some remarks on groups in which elements with the same \( p \)-power commute. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 10 (1999) pp. 11-15. http://gdmltest.u-ga.fr/item/RLIN_1999_9_10_1_11_0/
[1] Groups in which elements with the same -power commute. Le Matematiche, Supplemento vol. LI, 1996, 53-62. | MR 1485697 | Zbl 0902.20008
- - ,[2] Generalizations of certain elementary theorems on -groups. Proc. London Math. Soc., 11, 1961, 1-22. | MR 122876 | Zbl 0102.01903
,[3] On two-element subsets in groups. Ann. of the New York Academy of Sciences, 373, 1981, 183-190. | MR 719039 | Zbl 0579.20017
- ,[4] Counting squares of two-subsets in finite groups. Ars Combinatoria, to appear. | MR 1386941 | Zbl 0861.20024
- ,[5] Finite -groups in which every element of order is central. To appear.
- ,[6] | MR 224703 | Zbl 0412.20002
, Endliche Gruppen I. Springer-Verlag, Berlin1967.[7] A lemma on finite -groups and some consequences. Proc. Camb. Phil. Soc., 75, 1974, 133-137. | MR 332961 | Zbl 0277.20022
,[8] Centralizers of Elementary Abelian Subgroups in Finite -groups. J. Algebra, 51, 1978, 88-96. | MR 472997 | Zbl 0374.20024
,[9] The power structure of finite -groups. Bull. Austral. Math. Soc., 36, 1987, 1-10. | MR 897416 | Zbl 0607.20010
,[10] | MR 1024791 | Zbl 0732.20019
, Geometry of Defining Relations in Groups. Nauka, Moscow1989 (English translation: Kluwer Academic Publisher, Dordrecht 1991).[11] | Zbl 0243.20033
, Finiteness conditions and generalized soluble groups. Springer-Verlag, Berlin1972.