On the Cauchy problem for a class of parabolic equations with variable density
Kamin, Shoshana ; Kersner, Robert ; Tesei, Alberto
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998), p. 279-298 / Harvested from Biblioteca Digitale Italiana di Matematica

The well-posedness of the Cauchy problem for a class of parabolic equations with variable density is investigated. Necessary and sufficient conditions for existence and uniqueness in the class of bounded solutions are proved. If these conditions fail, sufficient conditions are given to ensure well-posedness in the class of bounded solutions which satisfy suitable constraints at infinity.

Si studia la buona posizione del problema di Cauchy per una classe di equazioni paraboliche con densità variabile. Si ricavano condizioni necessarie e sufficienti per l’esistenza e l’unicità nella classe delle soluzioni limitate. Se tali condizioni non sono verificate, si danno condizioni sufficienti a garantire la buona posizione del problema nella classe delle soluzioni limitate che all’infinito soddisfano opportune restrizioni.

Publié le : 1998-12-01
@article{RLIN_1998_9_9_4_279_0,
     author = {Shoshana Kamin and Robert Kersner and Alberto Tesei},
     title = {On the Cauchy problem for a class of parabolic equations with variable density},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {9},
     year = {1998},
     pages = {279-298},
     zbl = {0926.35045},
     mrnumber = {1722787},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_4_279_0}
}
Kamin, Shoshana; Kersner, Robert; Tesei, Alberto. On the Cauchy problem for a class of parabolic equations with variable density. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 279-298. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_4_279_0/

[1] Aronson, D. G., Uniqueness of positive weak solutions of second order parabolic equations. Ann. Polon. Math., 16, 1965, 285-303. | MR 176231 | Zbl 0137.29403

[2] Aronson, D. G. - Crandall, M. - Peletier, L. A., Stabilization of solutions in a degenerate nonlinear diffusion problem. Nonlin. Anal., 6, 1982, 1001-1022. | MR 678053 | Zbl 0518.35050

[3] Bertsch, M. - Kersner, R. - Peletier, L. A., Positivity versus localization in degenerate diffusion equations. Nonlin. Anal., 9, 1985, 987-1008. | MR 804564 | Zbl 0596.35073

[4] Borok, V. M. - Zitomirskii, Ja. I., Cauchy problem for parabolic systems, degenerating at infinity. Zap. Mech. Mat. Fak. Chark. Gos. Univ. im Gorkogo i Cark. Mat. Obzhestva, 29, 1963, 5-15 (in Russian).

[5] Eidel'Man, S. D., Parabolic systems. North-Holland, Amsterdam1969. | MR 252806 | Zbl 0181.37403

[6] Eidus, D., The Cauchy problem for the nonlinear filtration equation in an inhomogeneous medium. J. Differ. Equations, 84, 1990, 309-318. | MR 1047572 | Zbl 0707.35074

[7] Eidus, D., The perturbed Laplace operator in a weighted L2. J. Funct. Anal., 100, 1991, 400-410. | MR 1125232 | Zbl 0762.35020

[8] Eidus, D. - Kamin, S., The filtration equation in a class of functions decreasing at infinity. Proc. Amer. Math. Soc., 120, 1994, 825-830. | MR 1169025 | Zbl 0791.35065

[9] Feller, W., The parabolic differential equations and the associated semi-groups of transformations. Ann. Math., 55, 1952, 468-519. | MR 47886 | Zbl 0047.09303

[10] Freidlin, M., Functional integration and partial differential equations. Princeton University Press, Princeton1985. | MR 833742 | Zbl 0568.60057

[11] Friedman, A., On the uniqueness of the Cauchy problem for parabolic equations. Amer. J. Math., 81, 1959, 503-511. | MR 104907 | Zbl 0086.30001

[12] Hasminsky, R. Z., Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Prob. Appl., 5, 1970, 196-214 (in Russian). | MR 133871 | Zbl 0106.12001

[13] Hille, E., Les probabilités continues en chaîne. C.R. Acad. Sci. Paris, 230, 1950, 34-35. | MR 32119 | Zbl 0036.08801

[14] Holmgren, E., Sur les solutions quasianalytiques de l’équation de la chaleur. Ark. Mat., 18, 1924, 64-95. | JFM 50.0337.02

[15] Il'In, A. M. - Kalashnikov, A. S. - Oleinik, O. A., Linear equations of the second order of parabolic type. Russian Math. Surveys, 17, 1962, 1-144.

[16] Kamin, S. - Rosenau, P., Non-linear diffusion in a finite mass medium. Comm. Pure Appl. Math., 35, 1982, 113-127. | MR 637497 | Zbl 0469.35060

[17] Kamynin, L. I. - Himtsenko, B., On Tikhonov-Petrowsky problem for second order parabolic equations. Sibirsky Math. J., 22, 1981, 78-109 (in Russian). | MR 632819 | Zbl 0501.35040

[18] Lunardi, A., Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in Rn. Studia Math., 128, 1998, 171-198. | MR 1490820 | Zbl 0899.35014

[19] Murata, M., Non-uniqueness of the positive Cauchy problem for parabolic equations. J. Differ. Equations, 123, 1995, 343-387. | MR 1362880 | Zbl 0843.35036

[20] Petrowsky, I. G., On some problems in the theory of partial differential equations. Usp. Mat. Nauk, 1, 1946, 44-70 (in Russian).

[21] Pinchover, Y., On uniqueness and nonuniqueness of the positive Cauchy problem for parabolic equations with unbounded coefficients. Math. Z., 223, 1996, 569-586. | MR 1421956 | Zbl 0869.35010

[22] Pinsky, R. G., Positive harmonic functions and diffusion. Cambridge University Press, Cambridge1995. | MR 1326606 | Zbl 0858.31001

[23] Smirnova, G. N., The Cauchy problem for degenerate at infinity parabolic equations. Math. Sb., 70, 1966, 591-604 (in Russian). | MR 199563 | Zbl 0152.30101

[24] Sonin, I. M., On the classes of uniqueness for degenerate parabolic equations. Math. Sb., 85, 1971, 459-473 (in Russian). | MR 287167 | Zbl 0243.35050

[25] Täcklind, S., Sur les classes quasianalytiques de solutions des équations aux derivées partielles du type parabolique. Nord. Acta Reg. Soc. Sci. Uppsal., 10, 1936, 3-55. | JFM 62.1186.01

[26] Tikhonov, A. N., Théorèmes d’unicité pour l’équation de la chaleur. Math. Sb., 42, 1935, 199-216. | JFM 61.1203.05 | Zbl 0012.35501

[27] Widder, D. V., Positive temperatures on an infinite rod. Trans. Amer. Math. Soc., 55, 1944, 85-95. | MR 9795 | Zbl 0061.22303

[28] Zitomirski, Ja. I., Uniqueness classes for solutions of the Cauchy problem. Soviet. Math. Dokl., 8, 1967, 259-262. | Zbl 0153.41601