We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup does exist for any bounded ; and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.
Si considera un’equazione di Burgers stocastica. Si prova che il gradiente del semigruppo di transizione corrispondente esiste per ogni limitata e che può essere stimato con un opportuno peso esponenziale. Viene data un’applicazione ad una equazione di Hamilton-Jacobi che interviene in un problema di controllo stocastico.
@article{RLIN_1998_9_9_4_267_0, author = {Giuseppe Da Prato and Arnaud Debussche}, title = {Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation}, journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni}, volume = {9}, year = {1998}, pages = {267-277}, zbl = {0931.37036}, mrnumber = {1722786}, language = {en}, url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_4_267_0} }
Da Prato, Giuseppe; Debussche, Arnaud. Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 267-277. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_4_267_0/
[1] | MR 755001 | Zbl 0537.35003
, Large deviations and the Malliavin Calculus. Birkhäuser, 1984.[2] Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. | MR 1047576 | Zbl 0717.49022
- ,[3] Optimal control problems for reaction-diffusion equations by a Dynamic Programming approach. Scuola Normale Superiore, Pisa1998, preprint.
,[4] Control of the stochastic Burgers model of turbulence. Siam Journal on Control and Optimization, to appear. | MR 1691934 | Zbl 1111.49302
- ,[5] Stochastic Burgers equation. NoDEA, 1994, 389-402. | MR 1300149 | Zbl 0824.35112
- - ,[6] 229, 1996. | MR 1417491 | Zbl 0849.60052
- , Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes,[7] Stochastic flows on Riemannian manifolds. In: - (eds.), Diffusion processes and related problems in analysis. Birkhäuser, 1992, vol. II, 33-72. | MR 1187985 | Zbl 0758.58035
,[8] | MR 454768 | Zbl 0323.49001
- , Deterministic and Stochastic Optimal Control. Springer-Verlag, 1975.[9] Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations, 20, 1995, 775-826. | MR 1326907 | Zbl 0842.49021
,