Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation
Da Prato, Giuseppe ; Debussche, Arnaud
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998), p. 267-277 / Harvested from Biblioteca Digitale Italiana di Matematica

We consider a stochastic Burgers equation. We show that the gradient of the corresponding transition semigroup Ptφ does exist for any bounded φ; and can be estimated by a suitable exponential weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.

Si considera un’equazione di Burgers stocastica. Si prova che il gradiente del semigruppo di transizione corrispondente Ptφ esiste per ogni φ limitata e che può essere stimato con un opportuno peso esponenziale. Viene data un’applicazione ad una equazione di Hamilton-Jacobi che interviene in un problema di controllo stocastico.

Publié le : 1998-12-01
@article{RLIN_1998_9_9_4_267_0,
     author = {Giuseppe Da Prato and Arnaud Debussche},
     title = {Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {9},
     year = {1998},
     pages = {267-277},
     zbl = {0931.37036},
     mrnumber = {1722786},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_4_267_0}
}
Da Prato, Giuseppe; Debussche, Arnaud. Differentiability of the transition semigroup of the stochastic Burgers equation, and application to the corresponding Hamilton-Jacobi equation. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 267-277. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_4_267_0/

[1] Bismut, J. M., Large deviations and the Malliavin Calculus. Birkhäuser, 1984. | MR 755001 | Zbl 0537.35003

[2] Cannarsa, P. - Da Prato, G., Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. | MR 1047576 | Zbl 0717.49022

[3] Cerrai, S., Optimal control problems for reaction-diffusion equations by a Dynamic Programming approach. Scuola Normale Superiore, Pisa1998, preprint.

[4] Da Prato, G. - Debussche, A., Control of the stochastic Burgers model of turbulence. Siam Journal on Control and Optimization, to appear. | MR 1691934 | Zbl 1111.49302

[5] Da Prato, G. - Debussche, A. - Temam, R., Stochastic Burgers equation. NoDEA, 1994, 389-402. | MR 1300149 | Zbl 0824.35112

[6] Da Prato, G. - Zabczyk, J., Ergodicity for Infinite Dimensional Systems. London Mathematical Society Lecture Notes, 229, 1996. | MR 1417491 | Zbl 0849.60052

[7] Elworthy, K. D., Stochastic flows on Riemannian manifolds. In: M. A. Pinsky - V. Vihstutz (eds.), Diffusion processes and related problems in analysis. Birkhäuser, 1992, vol. II, 33-72. | MR 1187985 | Zbl 0758.58035

[8] Fleming, W. H. - Rishel, R. W., Deterministic and Stochastic Optimal Control. Springer-Verlag, 1975. | MR 454768 | Zbl 0323.49001

[9] Gozzi, F., Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun. in partial differential equations, 20, 1995, 775-826. | MR 1326907 | Zbl 0842.49021