On the regularity of abstract Cauchy problems and boundary value problems
Clément, Philippe ; Guerre-Delabrière, Sylvie
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998), p. 245-266 / Harvested from Biblioteca Digitale Italiana di Matematica

Maximal regularity (in Lp-sense) for abstract Cauchy problems of order one and boundary value problems of order two is studied. In general, regularity of the first problems implies regularity of the second ones; the converse is shown to hold if the underlying Banach space has the UMD property. A stronger notion of regularity, introduced by Sobolevskii, plays an important role in the proofs.

Viene studiata la regolarità massimale (in Lp) di problemi di Cauchy astratti di ordine uno e di problemi al contorno di ordine due. In generale, la regolarità del primo tipo di problemi implica la regolarità del secondo; l’inverso viene dimostrato quando lo spazio di Banach in oggetto ha la proprietà UMD. Una nozione di regolarità forte, introdotta da Sobolevskii, ha un ruolo importante nelle dimostrazioni.

Publié le : 1998-12-01
@article{RLIN_1998_9_9_4_245_0,
     author = {Philippe Cl\'ement and Sylvie Guerre-Delabri\`ere},
     title = {On the regularity of abstract Cauchy problems and boundary value problems},
     journal = {Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni},
     volume = {9},
     year = {1998},
     pages = {245-266},
     zbl = {0928.34042},
     mrnumber = {1722785},
     language = {en},
     url = {http://dml.mathdoc.fr/item/RLIN_1998_9_9_4_245_0}
}
Clément, Philippe; Guerre-Delabrière, Sylvie. On the regularity of abstract Cauchy problems and boundary value problems. Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Tome 9 (1998) pp. 245-266. http://gdmltest.u-ga.fr/item/RLIN_1998_9_9_4_245_0/

[1] Bourgain, J., Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Math., 21, 1983, 163-168. | MR 727340 | Zbl 0533.46008

[2] Bu, S. - Ph, - Guerre-Delabrière, S., Regularity of pairs of positive operators. Ill. J. of Maths., 1998, to appear. | MR 1631220 | Zbl 0905.47002

[3] Burkholder, R., A geometrical characterization of Banach spaces in which martingale differences are unconditional. Ann. Prob., 9, 1981, 997-1011. | MR 632972 | Zbl 0474.60036

[4] Butzer, P. - Berens, H., Semi-groups of operators and approximation. Springer-Verlag, NY Inc., 1967. | MR 230022 | Zbl 0164.43702

[5] Cannarsa, P. - Vespri, V., On maximal Lp-regularity for the abstract Cauchy Problems. Boll. U.M.I., 1986, 165-175. | MR 841623 | Zbl 0608.35027

[6] Ph, - Grisvard, P., Somme d’opérateurs et régularité Lp dans les problèmes aux limites. CRAS Paris, t. 314, 1992, 821-824. | MR 1166054 | Zbl 0773.47033

[7] Clément, Ph. - Guerre-Delabrière, S., On the regularity of abstract Cauchy problems of order one and boundary value problems of order two. Publ. Math. Univ. P. et M. Curie (Paris 6), 119, 1997, 1-44. | Zbl 0890.35001

[8] Coulhon, T. - Lamberton, D., Régularité Lp pour les equations d’évolution. Séminaire d’analyse fonctionnelle Paris VI-VII, 1984-85, 155-165. | MR 941819 | Zbl 0641.47046

[9] Da Prato, G. - Grisvard, P., Sommes d’opérateurs linéaires et equations différentielles opérationnelles. J. Math. pures et appl., 54, 1975, 305-387. | MR 442749 | Zbl 0315.47009

[10] Da Prato, G. - Grisvard, P., Equations d’évolution abstraites non linéaires de type parabolique. Ann. Math. Pura Appl., 120, 1979, 329-396. | MR 551075 | Zbl 0471.35036

[11] Da Prato, G. - Sinestrari, E., Differential operators with non dense domain. Ann. Scuola Norm. Sup. Pisa, cl. Sci., 4, 14, 1987, 185-344. | MR 939631 | Zbl 0652.34069

[12] De Simon, L., Un’applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine. Rend. Sem. Mat. Univ. Padova, 1964, 205-223. | MR 176192 | Zbl 0196.44803

[13] Di Blasio, G., Linear parabolic evolution equation in Lp-spaces. Annali Mat., 138, 1984, 55-104. | MR 779538 | Zbl 0568.35047

[14] Dore, G., Lp-regularity of abstract differential equations. Lecture notes in math., 1540, Springer-Verlag, 1993, 25-38. | MR 1225809 | Zbl 0818.47044

[15] Dore, G. - Venni, A., On the closedness of the sum of two closed operators. Math. Zeitschr., 196, 1987, 189-201. | MR 910825 | Zbl 0615.47002

[16] Giga, Y. - Sohr, H., Abstract Lp estimates for the Cauchy problem with applications to the Navier-Stokes equations in exterior domains. Hokkaido University Preprint, series in Mathematics, series 60, Nov. 1989, 38 pp. | MR 1138838 | Zbl 0739.35067

[17] Grisvard, P., Equations différentielles abstraites. Ann. Sc. Ecole Normale Sup., 2, 1969, 311-395. | MR 270209 | Zbl 0193.43502

[18] Guerre-Delabrière, S., Lp-regularity of the Cauchy problem and the geometry of Banach spaces. Ill. J. of Maths., 39, 1995, 556-566. | MR 1361519 | Zbl 0845.47028

[19] Hieber, M. - Prüss, J., Heat kernel and maximal Lp-Lq estimates for parabolic evolution equations. Comm. PDE, 22, 1997, 1647-1669. | MR 1469585 | Zbl 0886.35030

[20] Komatsu, H., Fractional powers of operators. Pacific J. of Math., 19, 1966, 285-346. | MR 201985 | Zbl 0154.16104

[21] Le Merdy, C., Counterexamples on Lp-Maximal regularity. Preprint

[22] Nagel, R., One-parameter semi groups of positive operators. Lecture notes in math., 1184, Springer-Verlag, Berlin-New York1986. | Zbl 0585.47030

[23] Pazy, A., Semi groups of linear operators and applications to partial differential equations. Springer-Verlag, New York1983. | Zbl 0516.47023

[24] Prüss, J. - Sohr, H., On operators with bounded imaginary powers in Banach spaces. Math. Z., 203, 1990, 429-452. | MR 1038710 | Zbl 0665.47015

[25] Sobolevskii, P. E., Fractional powers of coercively positive sums of operators. Soviet Math. Dokl., 16, 1975. | MR 482314 | Zbl 0333.47010

[26] Sobolevskii, P. E., Coerciveness inequalities for abstract parabolic equations. Dokl. Acad. Nauk, 157, 1964, 52-55. | MR 166487 | Zbl 0149.36001

[27] Tanabe, H., Equations of Evolution. Pitman, London, San Francisco, Melbourne1979. | MR 533824 | Zbl 0417.35003

[28] Triebel, H., Interpolation theory, function spaces, differential operators. North Holland, 1978. | MR 503903 | Zbl 0387.46032

[29] Von Wahl, W., The equation u+Au=f in a Hilbert space and Lp-estimates for parabolic equations. J. London Math. Soc., 25, 1982, 483-497. | MR 657505 | Zbl 0493.35050

[30] Yosida, K., Functional Analysis. Springer-Verlag, New York1971. | Zbl 0365.46001

[31] Zimmermann, F., On vector-valued Fourier multiplier theorems. Studia Math., 93, 1989, 201-222. | MR 1030488 | Zbl 0686.42008